[1]
M.S. Srinath, A.K. Sharma, P. Kumar P, A new approach to joining of bulk copper using microwave energy, Mater. Des. 32 (2018) 2685-2694.
DOI: 10.1016/j.matdes.2011.01.023
Google Scholar
[2]
A. Bansal , A.K. Sharma, P. Kumar , S. Das, Joining of mild steel plates using microwave energy, Adv Mat Res. (2018) 465-469.
DOI: 10.4028/www.scientific.net/amr.585.465
Google Scholar
[3]
M.S. Srinath, A.K. Sharma, P. Kumar, A novel route for joining of austenitic stainless steel (SS-316) using microwave energy, Proc Inst Mech Eng B J Eng Manuf P I MECH ENG B-J ENG. (2017).
Google Scholar
[4]
R.I. Badiger, S. Narendranath, M.S. Srinath, Joining of Inconel-625 alloy through microwave hybrid heating and its characterization, J. Manuf. Process. 18 (2015) 117-123.
DOI: 10.1016/j.jmapro.2015.02.002
Google Scholar
[5]
S. Singh, N.M. Suri, R.M. Belokar, Characterization of joint developed by fusion of aluminum metal powder through microwave hybrid heating, Mater. Today: Proc. 5 (2015) 1340-1346.
DOI: 10.1016/j.matpr.2015.07.052
Google Scholar
[6]
A. Bansal, A.K. Sharma, S. Das, P. Kumar, On microstructure and strength properties of microwave welded Inconel 718/ stainless steel (SS-316L), Proc. Inst. Mech. (2016).
DOI: 10.1177/1464420715589206
Google Scholar
[7]
R.I. Badiger, S. Narendranath, M.S. Srinath, Optimization of parameters influencing tensile strength of Inconel-625 welded joints developed through microwave hybrid heating, Mater. Today: Proc. 5 (2018) 7659-7667.
DOI: 10.1016/j.matpr.2017.11.441
Google Scholar
[8]
L. Bagha, S. Sehgal, A. Thakur, H. Kumar, Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304, J. Manuf. Process. 25 (2017) 290-295.
DOI: 10.1016/j.jmapro.2016.12.013
Google Scholar
[9]
L. Bagha, S. Sehgal, Joining of SS316-SS316 through microwave hybrid heating by using Nickel nano-powder, Int. J. Appl. Eng. Res. 13 (2018) 6446-6449.
DOI: 10.1016/j.mprp.2020.10.001
Google Scholar
[10]
S. Tamang, N. Kumar, S. Aravindan, Effect of gold nano dots in microwave brazing: a novel approach to join Ti6Al4V to MACOR®, Key Eng. Mater. 821 (2019) 222-228.
DOI: 10.4028/www.scientific.net/kem.821.222
Google Scholar
[11]
R. Samyal, A.K. Bagha, R. Bedi, Evaluation of modal characteristics of SS202-SS202 lap joint produced using selective microwave hybrid heating, J. Manuf. Process. 68 (2021) 1-13.
DOI: 10.1016/j.jmapro.2021.07.018
Google Scholar
[12]
M.S. Lingappa, M.S. Srinath, H.J. Amarendra, Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating, Mater. Res. Express. (2017)
DOI: 10.1088/2053-1591/aa7aaf
Google Scholar
[13]
A. Bansal, A.K. Sharma, S. Das, Metallurgical and mechanical characterization of mild steel-mild steel joint formed by microwave hybrid heating process, Sadhana - Acad Proc Eng Sci. 38 (2017) 679-686.
DOI: 10.1007/s12046-013-0142-4
Google Scholar
[14]
J. Pal, D. Gupta, T.P. Singh, Processing and characterization of SS316 based metal matrix composite casting through microwave hybrid heating, Proc. Inst. Mech. Eng., Part C. (2022) 1-20.
DOI: 10.1177/09544062221104443
Google Scholar
[15]
N. Somani, N. Singh, N.K. Gupta, Joining and characterization of SS-430 using microwave hybrid heating technique, J. Eng. Des. Technol. 19 (2021) 1344-1357.
DOI: 10.1108/jedt-08-2020-0322
Google Scholar
[16]
R.I. Badiger, S. Narendranath, M.S. Srinath, Optimization of process parameters by taguchi grey relational analysis in joining Inconel-625 through microwave hybrid heating, Phys. Met. Metallogr. (2019)
DOI: 10.1007/s13632-018-0508-4
Google Scholar
[17]
J. Chaouki, S. Farag, M. Attia, J. Doucet, The development of industrial (thermal) processes in the context of sustainability: The case for microwave heating, J. Chem. Eng. (2020)
DOI: 10.1002/cjce.23710
Google Scholar
[18]
M. Pal, S. Sehgal, H. Kumar, D. Goyal, Use of nickel filler powder in joining SS304-SS316 through microwave hybrid heating technique, Met. Powder Rep. (2021) 1-5.
DOI: 10.1016/j.mprp.2020.10.001
Google Scholar
[19]
M. Mazni, M.H. Ismail, H.F. Pahroraji, N.A. Malik, M.G. Hamami, F. Sukarman, N. Sulong, Effect of welding preheats on metallurgical analysis and microstructural development, IOP Conf. Ser.: Mater. Sci. Eng. 834 (2020).
DOI: 10.1088/1757-899x/834/1/012045
Google Scholar
[20]
L. Mair, P. Padipatvuthikul, Variables related to materials and preparing for bond strength testing irrespective of the test protocol, Dent Mater . 26 (2010) 17-23.
DOI: 10.1016/j.dental.2009.11.154
Google Scholar
[21]
A.L. Morresi, M. D'Amario, M. Capogreco, R. Gatto, G. Marzo, C. D'Arcangelo, A. Monaco, Thermal cycling for restorative materials:Does a standardized protocol exist in laboratory testing? A literature review, J Mech Behav Biomed Mater. 29 (2014) 295-308.
DOI: 10.1016/j.jmbbm.2013.09.013
Google Scholar
[22]
R. Yadav, M. Kumar, Dental restorative composite materials: A review, J. Oral Biosci. 61 (2019) 78-83.
Google Scholar
[23]
D. Fabris, J.C. Souza, F.S. Silva, M. Fredel, M. Gasik, B. Henriques, Influence of specimens' geometry and materials on the thermal stresses in dental Influence of specimens' geometry and materials on the thermal stresses in dental, J. Dent. (2018).
DOI: 10.1016/j.jdent.2017.08.017
Google Scholar
[24]
N. Saini, R.S. Mulik, M.M. Mahapatra, Prior-austenite grain refinement in P92 steel using double austenitization treatment, Mater. Res. Express. 6 (2019) 1-12.
DOI: 10.1088/2053-1591/aae98a
Google Scholar
[25]
J. Obiko, L.H. Chown, D.J. Whitefield, Microstructure characterisation and microhardness of P92 steel heat treated at the transformation temperatures, CoSAAMI 2019. 655 (2019).
DOI: 10.1088/1757-899x/655/1/012014
Google Scholar
[26]
Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen, B.A. Chin, Influence of aging and thermomechanical treatments on the mechanical properties of a nanocluster-strengthened ferritic steel, Metall Mater Trans A Phys Metall Mater Sci . 351 ( 2018).
DOI: 10.1007/s11661-011-0835-4
Google Scholar
[27]
L.H. Mair, Surface permeability and degradation of dental composites resulting from oral temperature changes, Dent Mater. 5 (1989) 247–255.
DOI: 10.1016/0109-5641(89)90070-5
Google Scholar
[28]
D.S. Palmer, M.T. Barco, E.J. Billy, Temperature extremes produced orally by hot and cold liquids, J Prosthet Dent. 67 (1992) 325–327.
DOI: 10.1016/0022-3913(92)90239-7
Google Scholar
[29]
C. Velmurugan, V. Senthilkumar, S. Sarala, J. Arivarasan, Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel, J. Mater. Process. Technol. (2018).
DOI: 10.1016/j.jmatprotec.2016.03.013
Google Scholar
[30]
U.K. Mudali, B.A. Rao, K. Shanmugam, R. Natarajan, B. Raj, Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel, J. Nucl. Mater. 321 (2013) 40-48.
DOI: 10.1016/s0022-3115(03)00194-6
Google Scholar
[31]
S. Shanavas, J.E. Dhas, Quality prediction of friction stir weld joints On AA 5052 H32 aluminium alloy using fuzzy logic technique, Mater. Today: Proc. 5 (2018) 12124-12132.
DOI: 10.1016/j.matpr.2018.02.190
Google Scholar
[32]
S. Karuthapandi, M. Ramu, P.R. Thyla, Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile, J Mech Sci Technol. 31 (2018) 2477–2486.
DOI: 10.1007/s12206-017-0445-1
Google Scholar
[33]
R.V. Vignesh, R. Padmanaban, Modelling tensile strength of friction stir welded aluminium alloy 1100 using fuzzy logic, IEEE. (2018).
DOI: 10.1109/isco.2017.7856034
Google Scholar
[34]
S. Janasekaran, M.F. Jamaludin, F. Yusof, M.H. Shukor, T. Ariga, Influence of BA4047 filler addition through Mamdani fuzzy logic optimization for double-sided T-joint welding of aluminum alloys using low-power fiber laser, Int J Adv Manuf Technol. (2017)
DOI: 10.1007/s00170-017-0695-1
Google Scholar