Microstructural Analysis and Microhardness Evaluation of Stainless Steel SS304 Joints Utilizing Microwave Hybrid Heating (MHH) and Cold/Heat Processing: A Fuzzy Logic Approach

Article Preview

Abstract:

Stainless steel SS304 is extensively used in dental applications for its high strength, hardness, and corrosion resistance. However, Conventional dental joining techniques such as soldering and fusion welding, reliant on elevated temperatures and toxic fluxes, present substantial oral health risks, leading to potential health deterioration due to toxic emissions. The study proposes the utilization of a microwave hybrid heating process (MHH) for joining stainless steel SS304 (15mm × 7.9mm × 0.2mm) and pure zinc metal powder (44 µm, 99% purity), citing its enhanced efficiency, speed, precision, and diminished environmental footprint as key characteristics without fume. It explores heat processing between 30°C to 60°C and cold temperature processing from 0°C to 10°C to analyze alterations in hardness properties and microstructures. The study identified a direct correlation between temperature and microhardness, observing an increase in microhardness with rising temperatures. Optimal microhardness of 208.6 HV was achieved at 60°C during a 3 min heat treatment. Cold temperatures induced slight deformation and grain transformation, while heat treatment enhanced grain density and hardness, particularly in the strongly bonded boundary layer, with experimental and predicted values using Fuzzy logic showing promising outcomes and errors below 10%. In conclusion, the study demonstrates that achieving a specific hardness value in stainless steel joints is highly desirable for dental applications, alongside the observation of favorable microstructures. These findings underscore the potential of MHH to propel dental technology forward and promote sustainable practices while addressing environmental concerns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-66

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Srinath, A.K. Sharma, P. Kumar P, A new approach to joining of bulk copper using microwave energy, Mater. Des. 32 (2018) 2685-2694.

DOI: 10.1016/j.matdes.2011.01.023

Google Scholar

[2] A. Bansal , A.K. Sharma, P. Kumar , S. Das, Joining of mild steel plates using microwave energy, Adv Mat Res. (2018) 465-469.

DOI: 10.4028/www.scientific.net/amr.585.465

Google Scholar

[3] M.S. Srinath, A.K. Sharma, P. Kumar, A novel route for joining of austenitic stainless steel (SS-316) using microwave energy, Proc Inst Mech Eng B J Eng Manuf P I MECH ENG B-J ENG. (2017).

Google Scholar

[4] R.I. Badiger, S. Narendranath, M.S. Srinath, Joining of Inconel-625 alloy through microwave hybrid heating and its characterization, J. Manuf. Process. 18 (2015) 117-123.

DOI: 10.1016/j.jmapro.2015.02.002

Google Scholar

[5] S. Singh, N.M. Suri, R.M. Belokar, Characterization of joint developed by fusion of aluminum metal powder through microwave hybrid heating, Mater. Today: Proc. 5 (2015) 1340-1346.

DOI: 10.1016/j.matpr.2015.07.052

Google Scholar

[6] A. Bansal, A.K. Sharma, S. Das, P. Kumar, On microstructure and strength properties of microwave welded Inconel 718/ stainless steel (SS-316L), Proc. Inst. Mech. (2016).

DOI: 10.1177/1464420715589206

Google Scholar

[7] R.I. Badiger, S. Narendranath, M.S. Srinath, Optimization of parameters influencing tensile strength of Inconel-625 welded joints developed through microwave hybrid heating, Mater. Today: Proc. 5 (2018) 7659-7667.

DOI: 10.1016/j.matpr.2017.11.441

Google Scholar

[8] L. Bagha, S. Sehgal, A. Thakur, H. Kumar, Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304, J. Manuf. Process. 25 (2017) 290-295.

DOI: 10.1016/j.jmapro.2016.12.013

Google Scholar

[9] L. Bagha, S. Sehgal, Joining of SS316-SS316 through microwave hybrid heating by using Nickel nano-powder, Int. J. Appl. Eng. Res. 13 (2018) 6446-6449.

DOI: 10.1016/j.mprp.2020.10.001

Google Scholar

[10] S. Tamang, N. Kumar, S. Aravindan, Effect of gold nano dots in microwave brazing: a novel approach to join Ti6Al4V to MACOR®, Key Eng. Mater. 821 (2019) 222-228.

DOI: 10.4028/www.scientific.net/kem.821.222

Google Scholar

[11] R. Samyal, A.K. Bagha, R. Bedi, Evaluation of modal characteristics of SS202-SS202 lap joint produced using selective microwave hybrid heating, J. Manuf. Process. 68 (2021) 1-13.

DOI: 10.1016/j.jmapro.2021.07.018

Google Scholar

[12] M.S. Lingappa, M.S. Srinath, H.J. Amarendra, Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating, Mater. Res. Express. (2017)

DOI: 10.1088/2053-1591/aa7aaf

Google Scholar

[13] A. Bansal, A.K. Sharma, S. Das, Metallurgical and mechanical characterization of mild steel-mild steel joint formed by microwave hybrid heating process, Sadhana - Acad Proc Eng Sci. 38 (2017) 679-686.

DOI: 10.1007/s12046-013-0142-4

Google Scholar

[14] J. Pal, D. Gupta, T.P. Singh, Processing and characterization of SS316 based metal matrix composite casting through microwave hybrid heating, Proc. Inst. Mech. Eng., Part C. (2022) 1-20.

DOI: 10.1177/09544062221104443

Google Scholar

[15] N. Somani, N. Singh, N.K. Gupta, Joining and characterization of SS-430 using microwave hybrid heating technique, J. Eng. Des. Technol. 19 (2021) 1344-1357.

DOI: 10.1108/jedt-08-2020-0322

Google Scholar

[16] R.I. Badiger, S. Narendranath, M.S. Srinath, Optimization of process parameters by taguchi grey relational analysis in joining Inconel-625 through microwave hybrid heating, Phys. Met. Metallogr. (2019)

DOI: 10.1007/s13632-018-0508-4

Google Scholar

[17] J. Chaouki, S. Farag, M. Attia, J. Doucet, The development of industrial (thermal) processes in the context of sustainability: The case for microwave heating, J. Chem. Eng. (2020)

DOI: 10.1002/cjce.23710

Google Scholar

[18] M. Pal, S. Sehgal, H. Kumar, D. Goyal, Use of nickel filler powder in joining SS304-SS316 through microwave hybrid heating technique, Met. Powder Rep. (2021) 1-5.

DOI: 10.1016/j.mprp.2020.10.001

Google Scholar

[19] M. Mazni, M.H. Ismail, H.F. Pahroraji, N.A. Malik, M.G. Hamami, F. Sukarman, N. Sulong, Effect of welding preheats on metallurgical analysis and microstructural development, IOP Conf. Ser.: Mater. Sci. Eng. 834 (2020).

DOI: 10.1088/1757-899x/834/1/012045

Google Scholar

[20] L. Mair, P. Padipatvuthikul, Variables related to materials and preparing for bond strength testing irrespective of the test protocol, Dent Mater . 26 (2010) 17-23.

DOI: 10.1016/j.dental.2009.11.154

Google Scholar

[21] A.L. Morresi, M. D'Amario, M. Capogreco, R. Gatto, G. Marzo, C. D'Arcangelo, A. Monaco, Thermal cycling for restorative materials:Does a standardized protocol exist in laboratory testing? A literature review, J Mech Behav Biomed Mater. 29 (2014) 295-308.

DOI: 10.1016/j.jmbbm.2013.09.013

Google Scholar

[22] R. Yadav, M. Kumar, Dental restorative composite materials: A review, J. Oral Biosci. 61 (2019) 78-83.

Google Scholar

[23] D. Fabris, J.C. Souza, F.S. Silva, M. Fredel, M. Gasik, B. Henriques, Influence of specimens' geometry and materials on the thermal stresses in dental Influence of specimens' geometry and materials on the thermal stresses in dental, J. Dent. (2018).

DOI: 10.1016/j.jdent.2017.08.017

Google Scholar

[24] N. Saini, R.S. Mulik, M.M. Mahapatra, Prior-austenite grain refinement in P92 steel using double austenitization treatment, Mater. Res. Express. 6 (2019) 1-12.

DOI: 10.1088/2053-1591/aae98a

Google Scholar

[25] J. Obiko, L.H. Chown, D.J. Whitefield, Microstructure characterisation and microhardness of P92 steel heat treated at the transformation temperatures, CoSAAMI 2019. 655 (2019).

DOI: 10.1088/1757-899x/655/1/012014

Google Scholar

[26] Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen, B.A. Chin, Influence of aging and thermomechanical treatments on the mechanical properties of a nanocluster-strengthened ferritic steel, Metall Mater Trans A Phys Metall Mater Sci . 351 ( 2018).

DOI: 10.1007/s11661-011-0835-4

Google Scholar

[27] L.H. Mair, Surface permeability and degradation of dental composites resulting from oral temperature changes, Dent Mater. 5 (1989) 247–255.

DOI: 10.1016/0109-5641(89)90070-5

Google Scholar

[28] D.S. Palmer, M.T. Barco, E.J. Billy, Temperature extremes produced orally by hot and cold liquids, J Prosthet Dent. 67 (1992) 325–327.

DOI: 10.1016/0022-3913(92)90239-7

Google Scholar

[29] C. Velmurugan, V. Senthilkumar, S. Sarala, J. Arivarasan, Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel, J. Mater. Process. Technol. (2018).

DOI: 10.1016/j.jmatprotec.2016.03.013

Google Scholar

[30] U.K. Mudali, B.A. Rao, K. Shanmugam, R. Natarajan, B. Raj, Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel, J. Nucl. Mater. 321 (2013) 40-48.

DOI: 10.1016/s0022-3115(03)00194-6

Google Scholar

[31] S. Shanavas, J.E. Dhas, Quality prediction of friction stir weld joints On AA 5052 H32 aluminium alloy using fuzzy logic technique, Mater. Today: Proc. 5 (2018) 12124-12132.

DOI: 10.1016/j.matpr.2018.02.190

Google Scholar

[32] S. Karuthapandi, M. Ramu, P.R. Thyla, Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile, J Mech Sci Technol. 31 (2018) 2477–2486.

DOI: 10.1007/s12206-017-0445-1

Google Scholar

[33] R.V. Vignesh, R. Padmanaban, Modelling tensile strength of friction stir welded aluminium alloy 1100 using fuzzy logic, IEEE. (2018).

DOI: 10.1109/isco.2017.7856034

Google Scholar

[34] S. Janasekaran, M.F. Jamaludin, F. Yusof, M.H. Shukor, T. Ariga, Influence of BA4047 filler addition through Mamdani fuzzy logic optimization for double-sided T-joint welding of aluminum alloys using low-power fiber laser, Int J Adv Manuf Technol. (2017)

DOI: 10.1007/s00170-017-0695-1

Google Scholar