Stress Concentration Modelling on Resistance Spot Welding Lap Joint of Steel ASS316L and Titanium Ti-6Al-4V with Variable Weld Geometries

Article Preview

Abstract:

This research is a finite element simulation on resistance spot welding (RSW) process between dissimilar sheet metals consist of Titanium alloy, Ti-6Al-4V and Austenitic Stainless Steel (ASS) 316L. The problem statement was inability to visualize the stress concentration profile over weld nugget joint when Titanium alloy and steel welded with variable electrode geometry of circle, triangle, square and hexagon. To determine the best geometry for best weld with lowest maximum stress concentration. The methodology of simulation was tensile-shear test using SOLIDWORKS software. The tensile-stress load of 664.09 N was applied across all 4 different weld geometries. The result for the lowest magnitude of maximum stress 180.6 MPa was on circle weld geometry. Triangle geometry registered highest stress concentration of 219.6 MPa. This proves that most common weld geometry used in industry was circle. Even for dissimilar material joint the result supports that circle weld geometry as the best geometry. Keywords: Resistance spot welding (RSW), stress concentration, weld nugget, weld geometry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-97

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hashmi, M.S.J.: Comprehensive materials processing. Elsevier, Oxford (2014).

Google Scholar

[2] Lin, H., Chou, T., Chou, C.: Modelling and optimization of the resistance spot welding process via a Taguchi—neural approach in the automobile industry. Proceedings of the institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 222, 1385-1393 (2008).

DOI: 10.1243/09544070jauto270

Google Scholar

[3] Agashe, S., Zhang, H.: Selection of schedules based on heat balance in resistance spot welding. Weld J 82, 179-183 (2003).

Google Scholar

[4] Mallick, P.K.: Materials, design and manufacturing for lightweight vehicles. 2nd edn. Woodhead publishing, Oxford (2021).

Google Scholar

[5] Norrish, J.: Advanced Welding Processes. Elsevier, Oxford (2006).

Google Scholar

[6] Yu, J., Shim, J., Rhee, S.: Characteristics of resistance spot welding for 1 GPa grade twin induced plasticity steel. Mater Trans 53, 2011-2018 (2012).

DOI: 10.2320/matertrans.m2012167

Google Scholar

[7] Ansari, N., Lee, D.-H., Huang, E.-W., Jain, J., Lee, S.Y.: Anisotropic microstructure, nanomechanical and corrosion behavior of direct energy deposited Ti–13Nb–13Zr biomedical alloy. Journal of Materials Research and Technology 26, 2682-2694 (2023).

DOI: 10.1016/j.jmrt.2023.08.015

Google Scholar

[8] Bay, N., Alves, L., Nielsen, C., Silva, C., Martins, P.: Deformation assisted joining. Advanced Joining Processes, pp.139-172. Elsevier (2021).

DOI: 10.1016/b978-0-12-820787-1.00004-8

Google Scholar

[9] Yu, J., Zhang, H., Wang, B., Gao, C., Sun, Z., He, P.: Dissimilar metal joining of Q235 mild steel to Ti6Al4V via resistance spot welding with Ni–Cu interlayer. Journal of Materials Research and Technology 15, 4086-4101 (2021).

DOI: 10.1016/j.jmrt.2021.10.039

Google Scholar

[10] Dong, S., Kelkar, G., Zhou, Y.: Electrode sticking during micro-resistance welding of thin metal sheets. IEEE transactions on electronics packaging manufacturing 25, 355-361 (2002).

DOI: 10.1109/tepm.2002.807732

Google Scholar

[11] Alreza, Y.D., Hendrawan, M.A.: The effect of holding time on dissimilar metal in the spot welding. In: AIP Conference Proceedings. AIP Publishing, (2024).

DOI: 10.1063/5.0179955

Google Scholar

[12] Waghmare, S., Shelare, S.D., Tembhurkar, C., Jawalekar, S.: Development of a model for the number of bends during stirrup making process. Advances in Metrology and Measurement of Engineering Surfaces: Select Proceedings of ICFMMP 2019, pp.69-78. Springer (2020).

DOI: 10.1007/978-981-15-5151-2_7

Google Scholar

[13] Kuang, J., Liu, A.: A study of the stress concentration factor on spot welds. Weld J 69, 468s-474s (1990).

Google Scholar

[14] Mertens, A.I., Reginster, S., Hakan, P., Dormal, T., Belgium, S.: Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by Selective Laser Melting: Influence of out-of-equilibrium microstructures. Powder Metallurgy 57(3), 184-189 (2014).

DOI: 10.1179/1743290114y.0000000092

Google Scholar

[15] Lindon, J.C., Tranter, G.E., Koppenaal, D.: Encyclopedia of spectroscopy and spectrometry. Academic Press, Oxford (2016).

Google Scholar

[16] Wang, F.E.: Bonding theory for metals and alloys. 2nd edn. Elsevier, Oxford (2018).

Google Scholar

[17] Halevy, I., Zamir, G., Winterrose, M., Sanjit, G., Grandini, C.R., Moreno-Gobbi, A.: Crystallographic structure of Ti-6Al-4V, Ti-HP and Ti-CP under high-pressure. In: Journal of physics: Conference series, p.012013. IOP Publishing, (2010).

DOI: 10.1088/1742-6596/215/1/012013

Google Scholar

[18] Bieler, T.R., Trevino, R.M., Zeng, L.: Alloys: Titanium. In: Bassani, F., Liedl, G.L., Wyder, P. (eds.) Encyclopedia of Condensed Matter Physics, pp.65-76. Elsevier, Oxford (2005).

DOI: 10.1016/b0-12-369401-9/00536-2

Google Scholar

[19] Omoniyi, P., Mahamood, M., Jen, T.-C., Akinlabi, E.: TIG welding of Ti6Al4V alloy: Microstructure, fractography, tensile and microhardness data. Data in Brief 38, 107274 (2021).

DOI: 10.1016/j.dib.2021.107274

Google Scholar

[20] Li, J., Zhou, X., Brochu, M., Provatas, N., Zhao, Y.F.: Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review. Additive Manufacturing 31, 100989 (2020).

DOI: 10.1016/j.addma.2019.100989

Google Scholar

[21] Miriyev, A., Stern, A., Tuval, E., Kalabukhov, S., Hooper, Z., Frage, N.: Titanium to steel joining by spark plasma sintering (SPS) technology. Journal of Materials Processing Technology 213, 161–166 (2013).

DOI: 10.1016/j.jmatprotec.2012.09.017

Google Scholar

[22] Marques, E.S.V., Silva, F.J.G., Pereira, A.B.: Comparison of Finite Element Methods in Fusion Welding Processes—A Review. Metals 10, (2020).

DOI: 10.3390/met10010075

Google Scholar

[23] Ma, N., Deng, D., Osawa, N., Rashed, S., Murakawa, H., Ueda, Y.: Welding deformation and residual stress prevention. 2nd edn. Butterworth-Heinemann, Oxford (2022).

DOI: 10.1016/b978-0-323-88665-9.00009-4

Google Scholar

[24] Kapil, A., Lee, T., Vivek, A., Bockbrader, J., Abke, T., Daehn, G.: Benchmarking strength and fatigue properties of spot impact welds. Journal of Materials Processing Technology 255, 219-233 (2018).

DOI: 10.1016/j.jmatprotec.2017.12.012

Google Scholar

[25] RWMA: Resistance Welding Manual. Fourth. Resistance Welder Manufacturers' Association Alliance (RWMA), Philadelphia, PA (2003).

Google Scholar

[26] Mansor, M.S.M., Yusof, F., Ariga, T., Miyashita, Y.: Microstructure and mechanical properties of micro-resistance spot welding between stainless steel 316L and Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology 96, 2567-2581 (2018).

DOI: 10.1007/s00170-018-1688-4

Google Scholar

[27] Kianersi, D., Mostafaei, A., Amadeh, A.A.: Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations. Mater Design 61, 251-263 (2014).

DOI: 10.1016/j.matdes.2014.04.075

Google Scholar

[28] Ghanbari, H.R., Shariati, M., Sanati, E., Masoudi Nejad, R.: Effects of spot welded parameters on fatigue behavior of ferrite-martensite dual-phase steel and hybrid joints. Engineering Failure Analysis 134, 106079 (2022).

DOI: 10.1016/j.engfailanal.2022.106079

Google Scholar

[29] Hot forming: Technology, variants and industrial use, https://www.gom.com/en/topics/hot-forming, 2023/9/5.

Google Scholar

[30] Fukumoto, H.U.M., Okamura, H.F.K., Nakayama, S.K.E., Yasuyama, T.O.M.: Finite Element Simulation of Resistance Spot Welding

Google Scholar

[31] Process for Automotive Steel. Nippon Steel and Sumitomo Metal Technical Report 119, 11 (2018).

Google Scholar

[32] Schulze, V., Vöhringer, O.: Plastic Deformation: Constitutive Description. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, pp.7050-7064. Elsevier, Oxford (2001).

DOI: 10.1016/b0-08-043152-6/01250-x

Google Scholar

[33] Wright, R.N.: Chapter 13 - Relevant Aspects of Copper and Copper Alloy Metallurgy. In: Wright, R.N. (ed.) Wire Technology (Second Edition), pp.177-200. Butterworth-Heinemann, Oxford (2016).

DOI: 10.1016/b978-0-12-802650-2.00013-3

Google Scholar

[34] Kumar Mandal, A., Meena, M.L., Kumar Chaudhary, A., Patidar, A., Gupta, B.L.: Comparative analysis of resistance spot welded and weld bonded joint of al 6082-T651. Materials Today: Proceedings 44, 4079-4085 (2021).

DOI: 10.1016/j.matpr.2020.10.446

Google Scholar

[35] Yu, J., Zhang, H.T., Wang, B., Gao, C., Sun, Z.C., He, P.: Dissimilar metal joining of Q235 mild steel to Ti6Al4V via resistance spot welding with Ni-Cu interlayer. Journal of Materials Research and Technology-Jmr&T 15, 4086-4101 (2021).

DOI: 10.1016/j.jmrt.2021.10.039

Google Scholar

[36] Mo, D.-f., Song, T.-f., Fang, Y.-j., Jiang, X.-s., Luo, C.Q., Simpson, M.D., Luo, Z.-p.: A Review on Diffusion Bonding between Titanium Alloys and Stainless Steels. Advances in Materials Science and Engineering 2018, 8701890 (2018).

DOI: 10.1155/2018/8701890

Google Scholar

[37] Hao, X., Dong, H., Yu, F., Li, P., Yang, Z.: Arc welding of titanium alloy to stainless steel with Cu foil as interlayer and Ni-based alloy as filler metal. Journal of Materials Research and Technology 13, 48-60 (2021).

DOI: 10.1016/j.jmrt.2021.04.054

Google Scholar

[38] Tembhurkar, C., Ambade, S., Kataria, R., Tikle, A.: Spot welding analysis of dissimilar joint by finite element analysis. Materials Today: Proceedings 50, 2052-2056 (2022).

DOI: 10.1016/j.matpr.2021.09.410

Google Scholar

[39] Ding, K., Wang, Y., Lei, M., Wei, T., Wu, G., Zhang, Y., Pan, H., Zhao, B., Gao, Y.: Numerical and experimental investigations on the enhancement of the tensile shear strength for resistance spot welded TWIP steel. Journal of Manufacturing Processes 76, 365-378 (2022).

DOI: 10.1016/j.jmapro.2022.02.031

Google Scholar

[40] Bhuvaneswaran, S., Padmanaban, R.: Prediction of spot weld fatigue life using finite element approach. Materials Today: Proceedings 46, 9875-9881 (2021).

DOI: 10.1016/j.matpr.2020.12.816

Google Scholar

[41] Huin, T., Dancette, S., Fabrègue, D., Dupuy, T.: Investigation of the failure of advanced high strength steels heterogeneous spot welds. Metals 6, 111 (2016).

DOI: 10.3390/met6050111

Google Scholar

[42] Saha, D.C., Chang, I., Park, Y.-D.: Heat-affected zone liquation crack on resistance spot welded TWIP steels. Materials Characterization 93, 40-51 (2014).

DOI: 10.1016/j.matchar.2014.03.016

Google Scholar

[43] Goldak, J.A., Akhlaghi, M.: Computational welding mechanics. Springer Science & Business Media, Berlin (2005).

Google Scholar