[1]
Hashmi, M.S.J.: Comprehensive materials processing. Elsevier, Oxford (2014).
Google Scholar
[2]
Lin, H., Chou, T., Chou, C.: Modelling and optimization of the resistance spot welding process via a Taguchi—neural approach in the automobile industry. Proceedings of the institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 222, 1385-1393 (2008).
DOI: 10.1243/09544070jauto270
Google Scholar
[3]
Agashe, S., Zhang, H.: Selection of schedules based on heat balance in resistance spot welding. Weld J 82, 179-183 (2003).
Google Scholar
[4]
Mallick, P.K.: Materials, design and manufacturing for lightweight vehicles. 2nd edn. Woodhead publishing, Oxford (2021).
Google Scholar
[5]
Norrish, J.: Advanced Welding Processes. Elsevier, Oxford (2006).
Google Scholar
[6]
Yu, J., Shim, J., Rhee, S.: Characteristics of resistance spot welding for 1 GPa grade twin induced plasticity steel. Mater Trans 53, 2011-2018 (2012).
DOI: 10.2320/matertrans.m2012167
Google Scholar
[7]
Ansari, N., Lee, D.-H., Huang, E.-W., Jain, J., Lee, S.Y.: Anisotropic microstructure, nanomechanical and corrosion behavior of direct energy deposited Ti–13Nb–13Zr biomedical alloy. Journal of Materials Research and Technology 26, 2682-2694 (2023).
DOI: 10.1016/j.jmrt.2023.08.015
Google Scholar
[8]
Bay, N., Alves, L., Nielsen, C., Silva, C., Martins, P.: Deformation assisted joining. Advanced Joining Processes, pp.139-172. Elsevier (2021).
DOI: 10.1016/b978-0-12-820787-1.00004-8
Google Scholar
[9]
Yu, J., Zhang, H., Wang, B., Gao, C., Sun, Z., He, P.: Dissimilar metal joining of Q235 mild steel to Ti6Al4V via resistance spot welding with Ni–Cu interlayer. Journal of Materials Research and Technology 15, 4086-4101 (2021).
DOI: 10.1016/j.jmrt.2021.10.039
Google Scholar
[10]
Dong, S., Kelkar, G., Zhou, Y.: Electrode sticking during micro-resistance welding of thin metal sheets. IEEE transactions on electronics packaging manufacturing 25, 355-361 (2002).
DOI: 10.1109/tepm.2002.807732
Google Scholar
[11]
Alreza, Y.D., Hendrawan, M.A.: The effect of holding time on dissimilar metal in the spot welding. In: AIP Conference Proceedings. AIP Publishing, (2024).
DOI: 10.1063/5.0179955
Google Scholar
[12]
Waghmare, S., Shelare, S.D., Tembhurkar, C., Jawalekar, S.: Development of a model for the number of bends during stirrup making process. Advances in Metrology and Measurement of Engineering Surfaces: Select Proceedings of ICFMMP 2019, pp.69-78. Springer (2020).
DOI: 10.1007/978-981-15-5151-2_7
Google Scholar
[13]
Kuang, J., Liu, A.: A study of the stress concentration factor on spot welds. Weld J 69, 468s-474s (1990).
Google Scholar
[14]
Mertens, A.I., Reginster, S., Hakan, P., Dormal, T., Belgium, S.: Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by Selective Laser Melting: Influence of out-of-equilibrium microstructures. Powder Metallurgy 57(3), 184-189 (2014).
DOI: 10.1179/1743290114y.0000000092
Google Scholar
[15]
Lindon, J.C., Tranter, G.E., Koppenaal, D.: Encyclopedia of spectroscopy and spectrometry. Academic Press, Oxford (2016).
Google Scholar
[16]
Wang, F.E.: Bonding theory for metals and alloys. 2nd edn. Elsevier, Oxford (2018).
Google Scholar
[17]
Halevy, I., Zamir, G., Winterrose, M., Sanjit, G., Grandini, C.R., Moreno-Gobbi, A.: Crystallographic structure of Ti-6Al-4V, Ti-HP and Ti-CP under high-pressure. In: Journal of physics: Conference series, p.012013. IOP Publishing, (2010).
DOI: 10.1088/1742-6596/215/1/012013
Google Scholar
[18]
Bieler, T.R., Trevino, R.M., Zeng, L.: Alloys: Titanium. In: Bassani, F., Liedl, G.L., Wyder, P. (eds.) Encyclopedia of Condensed Matter Physics, pp.65-76. Elsevier, Oxford (2005).
DOI: 10.1016/b0-12-369401-9/00536-2
Google Scholar
[19]
Omoniyi, P., Mahamood, M., Jen, T.-C., Akinlabi, E.: TIG welding of Ti6Al4V alloy: Microstructure, fractography, tensile and microhardness data. Data in Brief 38, 107274 (2021).
DOI: 10.1016/j.dib.2021.107274
Google Scholar
[20]
Li, J., Zhou, X., Brochu, M., Provatas, N., Zhao, Y.F.: Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review. Additive Manufacturing 31, 100989 (2020).
DOI: 10.1016/j.addma.2019.100989
Google Scholar
[21]
Miriyev, A., Stern, A., Tuval, E., Kalabukhov, S., Hooper, Z., Frage, N.: Titanium to steel joining by spark plasma sintering (SPS) technology. Journal of Materials Processing Technology 213, 161–166 (2013).
DOI: 10.1016/j.jmatprotec.2012.09.017
Google Scholar
[22]
Marques, E.S.V., Silva, F.J.G., Pereira, A.B.: Comparison of Finite Element Methods in Fusion Welding Processes—A Review. Metals 10, (2020).
DOI: 10.3390/met10010075
Google Scholar
[23]
Ma, N., Deng, D., Osawa, N., Rashed, S., Murakawa, H., Ueda, Y.: Welding deformation and residual stress prevention. 2nd edn. Butterworth-Heinemann, Oxford (2022).
DOI: 10.1016/b978-0-323-88665-9.00009-4
Google Scholar
[24]
Kapil, A., Lee, T., Vivek, A., Bockbrader, J., Abke, T., Daehn, G.: Benchmarking strength and fatigue properties of spot impact welds. Journal of Materials Processing Technology 255, 219-233 (2018).
DOI: 10.1016/j.jmatprotec.2017.12.012
Google Scholar
[25]
RWMA: Resistance Welding Manual. Fourth. Resistance Welder Manufacturers' Association Alliance (RWMA), Philadelphia, PA (2003).
Google Scholar
[26]
Mansor, M.S.M., Yusof, F., Ariga, T., Miyashita, Y.: Microstructure and mechanical properties of micro-resistance spot welding between stainless steel 316L and Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology 96, 2567-2581 (2018).
DOI: 10.1007/s00170-018-1688-4
Google Scholar
[27]
Kianersi, D., Mostafaei, A., Amadeh, A.A.: Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations. Mater Design 61, 251-263 (2014).
DOI: 10.1016/j.matdes.2014.04.075
Google Scholar
[28]
Ghanbari, H.R., Shariati, M., Sanati, E., Masoudi Nejad, R.: Effects of spot welded parameters on fatigue behavior of ferrite-martensite dual-phase steel and hybrid joints. Engineering Failure Analysis 134, 106079 (2022).
DOI: 10.1016/j.engfailanal.2022.106079
Google Scholar
[29]
Hot forming: Technology, variants and industrial use, https://www.gom.com/en/topics/hot-forming, 2023/9/5.
Google Scholar
[30]
Fukumoto, H.U.M., Okamura, H.F.K., Nakayama, S.K.E., Yasuyama, T.O.M.: Finite Element Simulation of Resistance Spot Welding
Google Scholar
[31]
Process for Automotive Steel. Nippon Steel and Sumitomo Metal Technical Report 119, 11 (2018).
Google Scholar
[32]
Schulze, V., Vöhringer, O.: Plastic Deformation: Constitutive Description. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, pp.7050-7064. Elsevier, Oxford (2001).
DOI: 10.1016/b0-08-043152-6/01250-x
Google Scholar
[33]
Wright, R.N.: Chapter 13 - Relevant Aspects of Copper and Copper Alloy Metallurgy. In: Wright, R.N. (ed.) Wire Technology (Second Edition), pp.177-200. Butterworth-Heinemann, Oxford (2016).
DOI: 10.1016/b978-0-12-802650-2.00013-3
Google Scholar
[34]
Kumar Mandal, A., Meena, M.L., Kumar Chaudhary, A., Patidar, A., Gupta, B.L.: Comparative analysis of resistance spot welded and weld bonded joint of al 6082-T651. Materials Today: Proceedings 44, 4079-4085 (2021).
DOI: 10.1016/j.matpr.2020.10.446
Google Scholar
[35]
Yu, J., Zhang, H.T., Wang, B., Gao, C., Sun, Z.C., He, P.: Dissimilar metal joining of Q235 mild steel to Ti6Al4V via resistance spot welding with Ni-Cu interlayer. Journal of Materials Research and Technology-Jmr&T 15, 4086-4101 (2021).
DOI: 10.1016/j.jmrt.2021.10.039
Google Scholar
[36]
Mo, D.-f., Song, T.-f., Fang, Y.-j., Jiang, X.-s., Luo, C.Q., Simpson, M.D., Luo, Z.-p.: A Review on Diffusion Bonding between Titanium Alloys and Stainless Steels. Advances in Materials Science and Engineering 2018, 8701890 (2018).
DOI: 10.1155/2018/8701890
Google Scholar
[37]
Hao, X., Dong, H., Yu, F., Li, P., Yang, Z.: Arc welding of titanium alloy to stainless steel with Cu foil as interlayer and Ni-based alloy as filler metal. Journal of Materials Research and Technology 13, 48-60 (2021).
DOI: 10.1016/j.jmrt.2021.04.054
Google Scholar
[38]
Tembhurkar, C., Ambade, S., Kataria, R., Tikle, A.: Spot welding analysis of dissimilar joint by finite element analysis. Materials Today: Proceedings 50, 2052-2056 (2022).
DOI: 10.1016/j.matpr.2021.09.410
Google Scholar
[39]
Ding, K., Wang, Y., Lei, M., Wei, T., Wu, G., Zhang, Y., Pan, H., Zhao, B., Gao, Y.: Numerical and experimental investigations on the enhancement of the tensile shear strength for resistance spot welded TWIP steel. Journal of Manufacturing Processes 76, 365-378 (2022).
DOI: 10.1016/j.jmapro.2022.02.031
Google Scholar
[40]
Bhuvaneswaran, S., Padmanaban, R.: Prediction of spot weld fatigue life using finite element approach. Materials Today: Proceedings 46, 9875-9881 (2021).
DOI: 10.1016/j.matpr.2020.12.816
Google Scholar
[41]
Huin, T., Dancette, S., Fabrègue, D., Dupuy, T.: Investigation of the failure of advanced high strength steels heterogeneous spot welds. Metals 6, 111 (2016).
DOI: 10.3390/met6050111
Google Scholar
[42]
Saha, D.C., Chang, I., Park, Y.-D.: Heat-affected zone liquation crack on resistance spot welded TWIP steels. Materials Characterization 93, 40-51 (2014).
DOI: 10.1016/j.matchar.2014.03.016
Google Scholar
[43]
Goldak, J.A., Akhlaghi, M.: Computational welding mechanics. Springer Science & Business Media, Berlin (2005).
Google Scholar