Investigation on the Thermal and Wettability Properties Aided with Mechanical Test Simulation of Tin (Sn) - Bismuth (Bi) Solder Alloy at Low Reflow Temperatures

Article Preview

Abstract:

The current study proposes to investigate the thermal, wettability and mechanical properties of a low temperature SnBi solder. The main aim is to investigate the performance of the SnBi solder alloy with different Bi composition. The study also establishes the relationship between melting temperature, spreading area and tensile stress of the SnBi with different Bi composition at different low reflow temperatures. The thermal and wettability tests are conducted experimentally, while the mechanical test will be analysed via finite element analyses (FEA). The single shear lap test method was adopted for the simulation. The thermal properties of the SnBi solder are investigated using the differential scanning calorimeter (DSC). The reflow temperature selected ranges from 160 °C to 220 °C to accommodate the purpose of low temperature soldering. Wetting test results showed that spreading area of Sn48Bi solder alloy increased to 28.1 and 42.88 at 180 °C and 210 °C respectively. The increase in the Bi composition reduced the tensile strength regardless of the increase of the reflow temperature. The preliminary results commend the characteristics of the SnBi solder as a possible alternative to the Pb solder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-114

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ismail, N., Atiqah, A., Jalar, A., Rahim, R. A. A.: A systematic literature review: The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints. Journal of Manufacturing Processes 83, 68–85 (2022).

DOI: 10.1016/j.jmapro.2022.08.045

Google Scholar

[2] Amares, S., Durairaj, R., Kuan, S. H.: Experimental study on the melting temperature, microstructural and improved mechanical properties of Sn58Bi/Cu solder alloy reinforced with 1%, 2% and 3% zirconia (ZrO2) nanoparticles, Archives of Metallurgy and Materials 66 (2), 407–418 (2021).

DOI: 10.24425/amm.2021.135872

Google Scholar

[3] Mahdavifard, M. H., Sabri, M. F., Shnawah, D., Said, S. M.: The effect of iron and bismuth addition on the microstructural, mechanical, and thermal properties of Sn-1Ag-0.5Cu solder alloy. Microelectronics Reliability 55 (9-10), 1886–1890 (2015).

DOI: 10.1016/j.microrel.2015.06.134

Google Scholar

[4] Celikin, M., Mehran M., Pekguleryuz M.: Effect of Bi additions on the creep behavior of SAC solder alloys. Journal of Electronic Materials 47(10), 5842–5849 (2018).

DOI: 10.1007/s11664-018-6458-4

Google Scholar

[5] Kang, H., Rajendran, S. H, Jung, J. P.: Low melting temperature Sn-Bi solder: Effect of alloying and nanoparticle addition on the microstructural, thermal, interfacial bonding, and mechanical characteristics. Metals 11(2), 364 (2021).

DOI: 10.3390/met11020364

Google Scholar

[6] Witkin, J. E.: Creep behavior of bismuth-containing lead-free solder alloys. Journal of Electronic Materials 41, 190–203 (2012).

DOI: 10.1007/s11664-011-1748-0

Google Scholar

[7] Belyakov, S. A., Xian, J., Zeng, G., Sweatman, K., Nishimura, T., Akaiwa, T., Gourlay, C. M.: Precipitation and coarsening of bismuth plates in Sn–Ag–Cu–Bi and Sn–Cu–Ni–Bi solder joints. Journal of Materials Science: Materials in Electronics 30, 378–390 (2019)

DOI: 10.1007/s10854-018-0302-8

Google Scholar

[8] Salleh, M. A.: Microstructure formation in reinforced Sn-Cu lead-free solder alloys. The University of Queensland Corp. Technical Paper (2016).

DOI: 10.14264/uql.2016.1141

Google Scholar

[9] Shunfeng, C., Chien-Ming, H., Pecht, M.: A review of lead-free solders for electronics applications. Microelectronics Reliability 75, 77–95. (2017)

DOI: 10.1016/j.microrel.2017.06.016

Google Scholar

[10] Ribas, M., Anil, K., Divya, K., Raghu, R. R., Pritha, C., Suresh, T., Siuli, S.: Low temperature soldering using Sn-Bi alloys. In: Proceedings of SMTA International, 2010-2016, Surface Mount Technology Association (SMTA), Rosemont (2017).

DOI: 10.1108/ssmt.2002.21914bab.006

Google Scholar

[11] Seelig, K., O'Neill, T., Pigeon, K.; Maaleckian, M.: Production testing of Ni-modified SnCu solder paste. In: Proceedings of the SMTA International, Ft. Worth, Surface Mount Technology Association (SMTA), Texas (2013).

Google Scholar

[12] Gancarz T., Pstrus J., Gasior W., Henein H.: Physicochemical properties of Sn-Zn and SAC+ Bi alloys. Journal of Electronic Materials 42, 288–293 (2013).

DOI: 10.1007/s11664-012-2336-7

Google Scholar

[13] Li, X., Ma, Y., Zhou, W., Wu, P.: Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Materials Science and Engineering: A 684, 328–334 (2017).

DOI: 10.1016/j.msea.2016.12.089

Google Scholar

[14] Silva, B. L., Garcia, A., Spinelli, J. E.: Wetting behavior of Sn–Ag–Cu and Sn–Bi–X alloys: Insights into factors affecting cooling rate. Journal of Materials Research and Technology 8(1), 1581–1586 (2018).

DOI: 10.1016/j.jmrt.2018.06.016

Google Scholar

[15] Singh, A., Durairaj, R., Tan, W. H.; Janasekaran, S.: Primary study on the effect of the 1% and 2% TiO2 nanoparticles to the microhardness, microstructure and contact angle of the SnBi/Cu solder alloy. Turkish Online Journal of Qualitative Inquiry 12 (6), (2016).

Google Scholar

[16] Bhat, K.N., Prabhu, K.N., Satyanarayan.: Effect of reflow temperature and substrate roughness on wettability, IMC growth and shear strength of SAC387/Cu bonds. Journal of Materials Science: Materials in Electronics 25, 864–872 (2014).

DOI: 10.1007/s10854-013-1658-4

Google Scholar

[17] Mcl Homepage, Solder wetting: How to prevent poor solder wetting. https://www.mclpcb.com/blog/prevent-poor-solder-wetting/, last accessed: 23/06/14

Google Scholar

[18] Bhadeshia, H., Robert H.: Steels: Microstructure and Properties 4th edn, Butterworth-Heinemann, Elsevier B.V. (2017).

Google Scholar

[19] Tu, K. N., Solder Joint Technology: Materials, Properties, and Reliability, 1st edition, Springer New York, (2007).

Google Scholar

[20] Dahl, O.N.: What is the right soldering temperature? Build Electronic Circuits, https://www.build-electronic-circuits.com/right-soldering-temperature/, last accessed 2023/05/10.

Google Scholar

[21] Burek, M.J., Jin, S., Leung, M.C., Jahed, Z., Wu, J., Budiman, A.S., Tamura, N., Kunz, M., Tsui, T.Y.: Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Materialia 59(11), 4709–4718. (2011).

DOI: 10.1016/j.actamat.2011.04.017

Google Scholar

[22] Skudnov, V. A., Sokolov, L. D., Gladkikh, A. N., Solenov V. M.: Mechanical properties of bismuth at different temperature and strain rates. Metal Science and Heat Treatment 11 (12), 981–984 (1970).

DOI: 10.1007/bf00654940

Google Scholar

[23] Ye, D., Du, C., Wu, M., Lai, Z.: Microstructure and mechanical properties of Sn–xBi solder alloy. Journal of Materials Science: Materials in Electronics 26(6), 3629–3637 (2015).

DOI: 10.1007/s10854-015-2880-z

Google Scholar

[24] Chen, C., Zhang, L., Wang, X., Lu, X., Gao, L., Zhao, M.; Guo, Y.: Mechanical properties and microstructure evolution of Cu/Sn58Bi/Cu solder joint reinforced by B4C nanoparticles. Journal of Materials Research and Technology 23, 1225–1238 (2023).

DOI: 10.1016/j.jmrt.2023.01.077

Google Scholar

[25] Wang, F., Huang, Y., Zhang, Z., Yan, C.: Interfacial reaction and mechanical properties of Sn-Bi solder joints. Materials 10(8), 920 (2017).

DOI: 10.3390/ma10080920

Google Scholar

[26] Zhu, W., Zhang, W., Zhou, W., Wu, P.: Improved microstructure and mechanical properties for SnBi solder alloy by addition of Cr powders. Journal of Alloys and Compounds 789, 805–813 (2019).

DOI: 10.1016/j.jallcom.2019.03.027

Google Scholar

[27] Pan, J., Toleno, B. J., Chou, T. C., Dee, W. J.: The effect of reflow profile on SnPb and SnAgCu solder joint shear strength. Soldering and Surface Mount Technology 18(4), 48–56 (2006).

DOI: 10.1108/09540910610717901

Google Scholar

[28] Aisha, I.S.R., Ourdjini, A., Hanim, M.A., Azlina, O.S.: Effect of reflow profile on intermetallic compound formation. In: International Conference on Manufacturing, Optimization, Industrial and Material Engineering, 012037. IOP Publishing, Bandung, (2013).

DOI: 10.1088/1757-899x/46/1/012037

Google Scholar

[29] Cai, S., Luo, X., Peng, J., Yu, Z., Zhou, H., Liu, N., Wang, X.: Deformation mechanism of various Sn-xBi alloys under tensile tests. Advanced Composites and Hybrid Materials 4(2), 379–391 (2021).

DOI: 10.1007/s42114-021-00231-2

Google Scholar

[30] Lai, Z., Ye, D.: Microstructure and fracture behavior of non-eutectic Sn–Bi solder alloys. Journal of Materials Science: Materials in Electronics 27(4), 3182–3192 (2016).

DOI: 10.1007/s10854-015-4143-4

Google Scholar

[31] Gao, H., Wei, F., Sui, Y., Qi, J.: Growth behaviors of intermetallic compounds on the Sn-0.7Cu-10Bi-xCo/CO interface during multiple reflow. Materials & Design 174, 107794 (2019).

DOI: 10.1016/j.matdes.2019.107794

Google Scholar

[32] Liu, Y., Tu, K.N.: Low melting point solders based on Sn, Bi, and In elements. Materials Today Advances 8, 100115 (2020)

DOI: 10.1016/j.mtadv.2020.100115

Google Scholar

[33] Galvin, C.O.T., Grimes, R.W., Burr, P.A.: A molecular dynamics method to identify the liquidus and solidus in a binary phase diagram. Computational Materials Science 186, 110016 (2021).

DOI: 10.1016/j.commatsci.2020.110016

Google Scholar

[34] Intertek Homepage, Lap Shear Strength of Adhesively Bonded Metal Specimens ASTM D1002, https://www.intertek.com/shear-testing /d1002/, last accessed 2023/06/10

Google Scholar

[35] Yeh, C. H., Chang, L. S., Straumal, B. B.: Wetting transition of grain boundaries in the Sn-rich part of the Sn-Bi phase diagram. Journal of Materials Science 46(5), (2011).

DOI: 10.1007/s10853-010-4961-y

Google Scholar

[36] Gok, K., Inal, S., Gok, A., Gulbandilar, E.: Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures. Journal of Materials Science: Materials in Medicine 28, 1557–1562 (2017).

DOI: 10.1007/s10856-017-5890-y

Google Scholar

[37] Sood, A., Ramarao, S., Carounanidy, U.: Influence of different crosshead speeds on diametral tensile strength of a methacrylate-based resin composite: An in-vitro study. Journal of Conservative Dentistry 18(3), 214 (2015).

DOI: 10.4103/0972-0707.157253

Google Scholar

[38] Dirasutisna, D. T., Soegiono, B., Kurniawan, B.; Masduki, M. Y.: Analysis of thermal properties of solder material Sn-Bi-Al using differential scanning calorimetry (DSC). Journal of Advanced Research in Materials Science 18(1), 1–19 (2016).

Google Scholar

[39] Palaniappan, S. C. K., Anselm, M. K.: A study on process, strength and microstructure analysis of low temperature SnBi containing solder pastes mixed with lead-free solder balls. Thesis. Rochester Institute of Technology (2016).

Google Scholar

[40] Moon, K.W., Boettinger, W. J., Kattner, U. R., Handwerker, C. A.,Lee, D.J.: The effect of Pb contamination on the solidification behavior of Sn-Bi solders. Journal of electronic materials 30, 45–52 (2001).

DOI: 10.1007/s11664-001-0213-x

Google Scholar

[41] Jiang, N., Zhang, L., Liu, Z.Q., Sun, L., Long, W.M., He, P., Xiong, M.Y., Zhao, M: Reliability issues of lead-free solder joints in electronic devices. Science and Technology of Advanced Materials 20(1), 876–901 (2019).

DOI: 10.1080/14686996.2019.1640072

Google Scholar

[42] Shen, L., Wu, Y., Wang, S., Chen, Z.: Creep behavior of Sn–Bi solder alloys at elevated temperatures studied by nanoindentation. Journal of Materials Science: Materials in Electronics 28(5), 4114–4124 (2017).

DOI: 10.1007/s10854-016-6031-y

Google Scholar

[43] Zhang, C., Liu, S., Qian, G., Zhou, J.; Xue, F.: Effect of Sb content on properties of Sn-Bi Solders. Transactions of Nonferrous Metals Society of China 24(1), 184–191 (2014).

DOI: 10.1016/s1003-6326(14)63046-6

Google Scholar

[44] Noor, E. E., Sharif, N. M., Yew, C. K., Ariga, T., Ismail, A. B.; Hussain, Z.: Wettability and strength of In–Bi–Sn lead-free solder alloy on copper substrate. Journal of Alloys and Compounds 507(1), 290–296 (2010).

DOI: 10.1016/j.jallcom.2010.07.182

Google Scholar

[45] Heinzel, A., Hering, W., Konys, J., Marocco, L., Litfin, K., Müller, G., Pacio, J., Schroer, C., Stieglitz, R., Stoppel, L., Weisenburger, A.; Wetzel, T.: Liquid metals as efficient high-temperature heat-transport fluids. Energy Technology 5(7), 1026–1036 (2017).

DOI: 10.1002/ente.201600721

Google Scholar

[46] Rasbudin, J. I, Rabiatul Adawiyah, M. A., Saliza Azlina. O.: The effect of multiple reflow on intermetallic layer of Sn- 4.0AgCu/Cu by using microwave and reflow soldering. In: Joining and Welding Symposium, 012014 IOP Publishing, Pahang (2017).

DOI: 10.1088/1757-899x/238/1/012014

Google Scholar

[47] Sun, F., Hochstenbach, P., van Driel, W.D., Zhang, G.Q.: Fracture morphology and mechanism of IMC in Low-Ag SAC solder/UBM (Ni(P)-Au) for WLCSP. Microelectronics Reliability 48(8-9), 1167–1170 (2008).

DOI: 10.1016/j.microrel.2008.06.011

Google Scholar

[48] Jen, Y.M., Chiou, Y.C.,Yu, C.L.: Fracture mechanics study on the intermetallic compound cracks for the solder joints of electronic packages. Engineering Failure Analysis 18(2), 797–810 (2011).

DOI: 10.1016/j.engfailanal.2010.12.026

Google Scholar

[49] Wang, F., Chen, H., Huang, Y., Liu, L., Zhang Z: Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. Journal of Materials Science: Materials in Electronics 30(4), 3222–3243 (2019).

DOI: 10.1007/s10854-019-00701-w

Google Scholar

[50] Basit, M. M., Burdick, D., Aglan, H.: Analysis of the viscoplastic behavior of Pb-free solder using lap shear joints. Microelectronics Reliability119, 114091 (2021).

DOI: 10.1016/j.microrel.2021.114091

Google Scholar