[1]
Ismail, N., Atiqah, A., Jalar, A., Rahim, R. A. A.: A systematic literature review: The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints. Journal of Manufacturing Processes 83, 68–85 (2022).
DOI: 10.1016/j.jmapro.2022.08.045
Google Scholar
[2]
Amares, S., Durairaj, R., Kuan, S. H.: Experimental study on the melting temperature, microstructural and improved mechanical properties of Sn58Bi/Cu solder alloy reinforced with 1%, 2% and 3% zirconia (ZrO2) nanoparticles, Archives of Metallurgy and Materials 66 (2), 407–418 (2021).
DOI: 10.24425/amm.2021.135872
Google Scholar
[3]
Mahdavifard, M. H., Sabri, M. F., Shnawah, D., Said, S. M.: The effect of iron and bismuth addition on the microstructural, mechanical, and thermal properties of Sn-1Ag-0.5Cu solder alloy. Microelectronics Reliability 55 (9-10), 1886–1890 (2015).
DOI: 10.1016/j.microrel.2015.06.134
Google Scholar
[4]
Celikin, M., Mehran M., Pekguleryuz M.: Effect of Bi additions on the creep behavior of SAC solder alloys. Journal of Electronic Materials 47(10), 5842–5849 (2018).
DOI: 10.1007/s11664-018-6458-4
Google Scholar
[5]
Kang, H., Rajendran, S. H, Jung, J. P.: Low melting temperature Sn-Bi solder: Effect of alloying and nanoparticle addition on the microstructural, thermal, interfacial bonding, and mechanical characteristics. Metals 11(2), 364 (2021).
DOI: 10.3390/met11020364
Google Scholar
[6]
Witkin, J. E.: Creep behavior of bismuth-containing lead-free solder alloys. Journal of Electronic Materials 41, 190–203 (2012).
DOI: 10.1007/s11664-011-1748-0
Google Scholar
[7]
Belyakov, S. A., Xian, J., Zeng, G., Sweatman, K., Nishimura, T., Akaiwa, T., Gourlay, C. M.: Precipitation and coarsening of bismuth plates in Sn–Ag–Cu–Bi and Sn–Cu–Ni–Bi solder joints. Journal of Materials Science: Materials in Electronics 30, 378–390 (2019)
DOI: 10.1007/s10854-018-0302-8
Google Scholar
[8]
Salleh, M. A.: Microstructure formation in reinforced Sn-Cu lead-free solder alloys. The University of Queensland Corp. Technical Paper (2016).
DOI: 10.14264/uql.2016.1141
Google Scholar
[9]
Shunfeng, C., Chien-Ming, H., Pecht, M.: A review of lead-free solders for electronics applications. Microelectronics Reliability 75, 77–95. (2017)
DOI: 10.1016/j.microrel.2017.06.016
Google Scholar
[10]
Ribas, M., Anil, K., Divya, K., Raghu, R. R., Pritha, C., Suresh, T., Siuli, S.: Low temperature soldering using Sn-Bi alloys. In: Proceedings of SMTA International, 2010-2016, Surface Mount Technology Association (SMTA), Rosemont (2017).
DOI: 10.1108/ssmt.2002.21914bab.006
Google Scholar
[11]
Seelig, K., O'Neill, T., Pigeon, K.; Maaleckian, M.: Production testing of Ni-modified SnCu solder paste. In: Proceedings of the SMTA International, Ft. Worth, Surface Mount Technology Association (SMTA), Texas (2013).
Google Scholar
[12]
Gancarz T., Pstrus J., Gasior W., Henein H.: Physicochemical properties of Sn-Zn and SAC+ Bi alloys. Journal of Electronic Materials 42, 288–293 (2013).
DOI: 10.1007/s11664-012-2336-7
Google Scholar
[13]
Li, X., Ma, Y., Zhou, W., Wu, P.: Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys. Materials Science and Engineering: A 684, 328–334 (2017).
DOI: 10.1016/j.msea.2016.12.089
Google Scholar
[14]
Silva, B. L., Garcia, A., Spinelli, J. E.: Wetting behavior of Sn–Ag–Cu and Sn–Bi–X alloys: Insights into factors affecting cooling rate. Journal of Materials Research and Technology 8(1), 1581–1586 (2018).
DOI: 10.1016/j.jmrt.2018.06.016
Google Scholar
[15]
Singh, A., Durairaj, R., Tan, W. H.; Janasekaran, S.: Primary study on the effect of the 1% and 2% TiO2 nanoparticles to the microhardness, microstructure and contact angle of the SnBi/Cu solder alloy. Turkish Online Journal of Qualitative Inquiry 12 (6), (2016).
Google Scholar
[16]
Bhat, K.N., Prabhu, K.N., Satyanarayan.: Effect of reflow temperature and substrate roughness on wettability, IMC growth and shear strength of SAC387/Cu bonds. Journal of Materials Science: Materials in Electronics 25, 864–872 (2014).
DOI: 10.1007/s10854-013-1658-4
Google Scholar
[17]
Mcl Homepage, Solder wetting: How to prevent poor solder wetting. https://www.mclpcb.com/blog/prevent-poor-solder-wetting/, last accessed: 23/06/14
Google Scholar
[18]
Bhadeshia, H., Robert H.: Steels: Microstructure and Properties 4th edn, Butterworth-Heinemann, Elsevier B.V. (2017).
Google Scholar
[19]
Tu, K. N., Solder Joint Technology: Materials, Properties, and Reliability, 1st edition, Springer New York, (2007).
Google Scholar
[20]
Dahl, O.N.: What is the right soldering temperature? Build Electronic Circuits, https://www.build-electronic-circuits.com/right-soldering-temperature/, last accessed 2023/05/10.
Google Scholar
[21]
Burek, M.J., Jin, S., Leung, M.C., Jahed, Z., Wu, J., Budiman, A.S., Tamura, N., Kunz, M., Tsui, T.Y.: Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Materialia 59(11), 4709–4718. (2011).
DOI: 10.1016/j.actamat.2011.04.017
Google Scholar
[22]
Skudnov, V. A., Sokolov, L. D., Gladkikh, A. N., Solenov V. M.: Mechanical properties of bismuth at different temperature and strain rates. Metal Science and Heat Treatment 11 (12), 981–984 (1970).
DOI: 10.1007/bf00654940
Google Scholar
[23]
Ye, D., Du, C., Wu, M., Lai, Z.: Microstructure and mechanical properties of Sn–xBi solder alloy. Journal of Materials Science: Materials in Electronics 26(6), 3629–3637 (2015).
DOI: 10.1007/s10854-015-2880-z
Google Scholar
[24]
Chen, C., Zhang, L., Wang, X., Lu, X., Gao, L., Zhao, M.; Guo, Y.: Mechanical properties and microstructure evolution of Cu/Sn58Bi/Cu solder joint reinforced by B4C nanoparticles. Journal of Materials Research and Technology 23, 1225–1238 (2023).
DOI: 10.1016/j.jmrt.2023.01.077
Google Scholar
[25]
Wang, F., Huang, Y., Zhang, Z., Yan, C.: Interfacial reaction and mechanical properties of Sn-Bi solder joints. Materials 10(8), 920 (2017).
DOI: 10.3390/ma10080920
Google Scholar
[26]
Zhu, W., Zhang, W., Zhou, W., Wu, P.: Improved microstructure and mechanical properties for SnBi solder alloy by addition of Cr powders. Journal of Alloys and Compounds 789, 805–813 (2019).
DOI: 10.1016/j.jallcom.2019.03.027
Google Scholar
[27]
Pan, J., Toleno, B. J., Chou, T. C., Dee, W. J.: The effect of reflow profile on SnPb and SnAgCu solder joint shear strength. Soldering and Surface Mount Technology 18(4), 48–56 (2006).
DOI: 10.1108/09540910610717901
Google Scholar
[28]
Aisha, I.S.R., Ourdjini, A., Hanim, M.A., Azlina, O.S.: Effect of reflow profile on intermetallic compound formation. In: International Conference on Manufacturing, Optimization, Industrial and Material Engineering, 012037. IOP Publishing, Bandung, (2013).
DOI: 10.1088/1757-899x/46/1/012037
Google Scholar
[29]
Cai, S., Luo, X., Peng, J., Yu, Z., Zhou, H., Liu, N., Wang, X.: Deformation mechanism of various Sn-xBi alloys under tensile tests. Advanced Composites and Hybrid Materials 4(2), 379–391 (2021).
DOI: 10.1007/s42114-021-00231-2
Google Scholar
[30]
Lai, Z., Ye, D.: Microstructure and fracture behavior of non-eutectic Sn–Bi solder alloys. Journal of Materials Science: Materials in Electronics 27(4), 3182–3192 (2016).
DOI: 10.1007/s10854-015-4143-4
Google Scholar
[31]
Gao, H., Wei, F., Sui, Y., Qi, J.: Growth behaviors of intermetallic compounds on the Sn-0.7Cu-10Bi-xCo/CO interface during multiple reflow. Materials & Design 174, 107794 (2019).
DOI: 10.1016/j.matdes.2019.107794
Google Scholar
[32]
Liu, Y., Tu, K.N.: Low melting point solders based on Sn, Bi, and In elements. Materials Today Advances 8, 100115 (2020)
DOI: 10.1016/j.mtadv.2020.100115
Google Scholar
[33]
Galvin, C.O.T., Grimes, R.W., Burr, P.A.: A molecular dynamics method to identify the liquidus and solidus in a binary phase diagram. Computational Materials Science 186, 110016 (2021).
DOI: 10.1016/j.commatsci.2020.110016
Google Scholar
[34]
Intertek Homepage, Lap Shear Strength of Adhesively Bonded Metal Specimens ASTM D1002, https://www.intertek.com/shear-testing /d1002/, last accessed 2023/06/10
Google Scholar
[35]
Yeh, C. H., Chang, L. S., Straumal, B. B.: Wetting transition of grain boundaries in the Sn-rich part of the Sn-Bi phase diagram. Journal of Materials Science 46(5), (2011).
DOI: 10.1007/s10853-010-4961-y
Google Scholar
[36]
Gok, K., Inal, S., Gok, A., Gulbandilar, E.: Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures. Journal of Materials Science: Materials in Medicine 28, 1557–1562 (2017).
DOI: 10.1007/s10856-017-5890-y
Google Scholar
[37]
Sood, A., Ramarao, S., Carounanidy, U.: Influence of different crosshead speeds on diametral tensile strength of a methacrylate-based resin composite: An in-vitro study. Journal of Conservative Dentistry 18(3), 214 (2015).
DOI: 10.4103/0972-0707.157253
Google Scholar
[38]
Dirasutisna, D. T., Soegiono, B., Kurniawan, B.; Masduki, M. Y.: Analysis of thermal properties of solder material Sn-Bi-Al using differential scanning calorimetry (DSC). Journal of Advanced Research in Materials Science 18(1), 1–19 (2016).
Google Scholar
[39]
Palaniappan, S. C. K., Anselm, M. K.: A study on process, strength and microstructure analysis of low temperature SnBi containing solder pastes mixed with lead-free solder balls. Thesis. Rochester Institute of Technology (2016).
Google Scholar
[40]
Moon, K.W., Boettinger, W. J., Kattner, U. R., Handwerker, C. A.,Lee, D.J.: The effect of Pb contamination on the solidification behavior of Sn-Bi solders. Journal of electronic materials 30, 45–52 (2001).
DOI: 10.1007/s11664-001-0213-x
Google Scholar
[41]
Jiang, N., Zhang, L., Liu, Z.Q., Sun, L., Long, W.M., He, P., Xiong, M.Y., Zhao, M: Reliability issues of lead-free solder joints in electronic devices. Science and Technology of Advanced Materials 20(1), 876–901 (2019).
DOI: 10.1080/14686996.2019.1640072
Google Scholar
[42]
Shen, L., Wu, Y., Wang, S., Chen, Z.: Creep behavior of Sn–Bi solder alloys at elevated temperatures studied by nanoindentation. Journal of Materials Science: Materials in Electronics 28(5), 4114–4124 (2017).
DOI: 10.1007/s10854-016-6031-y
Google Scholar
[43]
Zhang, C., Liu, S., Qian, G., Zhou, J.; Xue, F.: Effect of Sb content on properties of Sn-Bi Solders. Transactions of Nonferrous Metals Society of China 24(1), 184–191 (2014).
DOI: 10.1016/s1003-6326(14)63046-6
Google Scholar
[44]
Noor, E. E., Sharif, N. M., Yew, C. K., Ariga, T., Ismail, A. B.; Hussain, Z.: Wettability and strength of In–Bi–Sn lead-free solder alloy on copper substrate. Journal of Alloys and Compounds 507(1), 290–296 (2010).
DOI: 10.1016/j.jallcom.2010.07.182
Google Scholar
[45]
Heinzel, A., Hering, W., Konys, J., Marocco, L., Litfin, K., Müller, G., Pacio, J., Schroer, C., Stieglitz, R., Stoppel, L., Weisenburger, A.; Wetzel, T.: Liquid metals as efficient high-temperature heat-transport fluids. Energy Technology 5(7), 1026–1036 (2017).
DOI: 10.1002/ente.201600721
Google Scholar
[46]
Rasbudin, J. I, Rabiatul Adawiyah, M. A., Saliza Azlina. O.: The effect of multiple reflow on intermetallic layer of Sn- 4.0AgCu/Cu by using microwave and reflow soldering. In: Joining and Welding Symposium, 012014 IOP Publishing, Pahang (2017).
DOI: 10.1088/1757-899x/238/1/012014
Google Scholar
[47]
Sun, F., Hochstenbach, P., van Driel, W.D., Zhang, G.Q.: Fracture morphology and mechanism of IMC in Low-Ag SAC solder/UBM (Ni(P)-Au) for WLCSP. Microelectronics Reliability 48(8-9), 1167–1170 (2008).
DOI: 10.1016/j.microrel.2008.06.011
Google Scholar
[48]
Jen, Y.M., Chiou, Y.C.,Yu, C.L.: Fracture mechanics study on the intermetallic compound cracks for the solder joints of electronic packages. Engineering Failure Analysis 18(2), 797–810 (2011).
DOI: 10.1016/j.engfailanal.2010.12.026
Google Scholar
[49]
Wang, F., Chen, H., Huang, Y., Liu, L., Zhang Z: Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. Journal of Materials Science: Materials in Electronics 30(4), 3222–3243 (2019).
DOI: 10.1007/s10854-019-00701-w
Google Scholar
[50]
Basit, M. M., Burdick, D., Aglan, H.: Analysis of the viscoplastic behavior of Pb-free solder using lap shear joints. Microelectronics Reliability119, 114091 (2021).
DOI: 10.1016/j.microrel.2021.114091
Google Scholar