[1]
Rizzo, A., Goel, S., Luisa Grilli, M., Iglesias, R., Jaworska, L., Lapkovskis, V., ... & Valerini, D. (2020). The critical raw materials in cutting tools for machining applications: A review. Materials, 13(6), 1377.
DOI: 10.3390/ma13061377
Google Scholar
[2]
Khairnar, A., Patange, A., Pardeshi, S., & Jegadeeshwaran, R. (2021). Supervision of Carbide Tool Condition by Training of Vibration-based Statistical Model using Boosted Trees Ensemble. International Journal of Performability Engineering, 17(2).
DOI: 10.23940/ijpe.21.02.p7.229240
Google Scholar
[3]
Vereschaka, A. S., Grigoriev, S. N., Sotova, E. S., & Vereschaka, A. A. (2013). Improving the efficiency of the cutting tools made of mixed ceramics by applying modifying nanoscale multilayered coatings. In Advanced Materials Research (Vol. 712, pp.391-394). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amr.712-715.391
Google Scholar
[4]
Asaad M, W., Al-Ethari, H., & Kareem, S. J. (2022, November). Surface modification of cutting tool by multilayer coatings a-Review paper. In AIP Conference Proceedings (Vol. 2660, No. 1, p.020093). AIP Publishing LLC.
DOI: 10.1063/5.0107996
Google Scholar
[5]
Vereschaka, A. A., Volosova, M. A., Batako, A., Vereschaka, A. S., Sitnikov, N. N., & Seleznev, A. E. Application of nanostructured multilayer wear-resistant coating-Features improving operational properties of cutting ceramics.
DOI: 10.4028/www.scientific.net/jnanor.50.90
Google Scholar
[6]
Fotovvati, B., Namdari, N., & Dehghanghadikolaei, A. (2019). On coating techniques for surface protection: A review. Journal of Manufacturing and Materials processing, 3(1), 28.
DOI: 10.3390/jmmp3010028
Google Scholar
[7]
Cao, X. Q., Vassen, R., & Stöver, D. (2004). Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 24(1), 1-10.
DOI: 10.1016/s0955-2219(03)00129-8
Google Scholar
[8]
Soković, M., Barišić, B., & Sladić, S. (2009). Model of quality management of hard coatings on ceramic cutting tools. Journal of Materials Processing Technology, 209(8), 4207-4216.
DOI: 10.1016/j.jmatprotec.2008.11.026
Google Scholar
[9]
Prengel, H. G., Pfouts, W. R., & Santhanam, A. T. (1998). State of the art in hard coatings for carbide cutting tools. Surface and Coatings Technology, 102(3), 183-190.
DOI: 10.1016/s0257-8972(96)03061-7
Google Scholar
[10]
Auerkari, P. (1996). Mechanical and physical properties of engineering alumina ceramics (Vol. 23). Espoo: Technical Research Centre of Finland.
Google Scholar
[11]
Sielski, R. A. (2008). Research needs in aluminum structure. Ships and Offshore Structures, 3(1), 57-65.
DOI: 10.1080/17445300701797111
Google Scholar
[12]
Yao, Z. Q., Ivanisenko, Y., Diemant, T., Caron, A., Chuvilin, A., Jiang, J. Z., ... & Fecht, H. J. (2010). Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomaterialia, 6(7), 2816-2825.
DOI: 10.1016/j.actbio.2009.12.053
Google Scholar
[13]
Normand, B., Fervel, V., Coddet, C., & Nikitine, V. (2000). Tribological properties of plasma sprayed alumina–titania coatings: role and control of the microstructure. Surface and Coatings technology, 123(2-3), 278-287.
DOI: 10.1016/s0257-8972(99)00532-0
Google Scholar
[14]
Wang, W., Varghese, O. K., Paulose, M., Grimes, C. A., Wang, Q., & Dickey, E. C. (2004). A study on the growth and structure of titania nanotubes. Journal of materials research, 19(2), 417-422.
DOI: 10.1557/jmr.2004.19.2.417
Google Scholar
[15]
Rezende, B. A., dos Santos, A. J., Câmara, M. A., do Carmo, D. J., Houmard, M., Rodrigues, A. R., & Campos Rubio, J. C. (2019). Characterization of ceramics coatings processed by sol-gel for cutting tools. Coatings, 9(11), 755.
DOI: 10.3390/coatings9110755
Google Scholar
[16]
Asaad, W., Al-Ethari, H., & Kareem, S. (2022). Investigation of microstructure, morphology and properties of monolayer and multilayer coating T6-HSS by the sol–gel route. Advances in Materials and Processing Technologies, 1-27.
DOI: 10.1080/2374068x.2022.2129518
Google Scholar
[17]
Asaad, W., Al-Ethari, H., & Kareem, S. J. (2022, July). Using Grey Relation Analysis to Improve Tool Life in Medium Carbon Steel Turning by Coating Multilayer HSS Insert. In 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp.507-513). IEEE.
DOI: 10.1109/icmae56000.2022.9852876
Google Scholar
[18]
Ganvir, A., Curry, N., Björklund, S., Markocsan, N., & Nylén, P. (2015). Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS). Journal of Thermal Spray Technology, 24, 1195-1204.
DOI: 10.1007/s11666-015-0263-x
Google Scholar
[19]
Jadhav, P. M., & Reddy, N. S. K. (2018, April). Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles. In IOP Conference Series: Materials Science and Engineering (Vol. 346, No. 1, p.012007). IOP Publishing.
DOI: 10.1088/1757-899x/346/1/012007
Google Scholar
[20]
Dharini, T., Kuppusami, P., Panda, P., Ramaseshan, R., & Kirubaharan, A. K. (2020). Nanomechanical behaviour of Ni–YSZ nanocomposite coatings on superalloy 690 as diffusion barrier coatings for nuclear applications. Ceramics International, 46(15), 24183-24193.
DOI: 10.1016/j.ceramint.2020.06.198
Google Scholar
[21]
Morteza Hajizadeh-Oghaz , Reza Shoja Razavi ,Ali Ghasemi, (2015), Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications, Journal of Sol-Gel Science and Technology·
DOI: 10.1007/s10971-015-3639-y
Google Scholar
[22]
Asaad, W., Al-Ethari, H., & Kareem, S. J. (2023, July). Improvement the Performance of Carbide Cutting Tool by YSZ Coating, In 202314th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp.). IEEE.
DOI: 10.1109/icmae59650.2023.10424434
Google Scholar
[23]
Subbarao, E. C. (1981). Zirconia-an overview. Advances in ceramics, 1, 1-24.
Google Scholar
[24]
Vakilifard, H., Akhyani, H., & Rahimipour, M. Evaluating and Optimizing Plasma Spray Parameters on Thermal Barrier Coatings Using Response Surface Method.
Google Scholar
[25]
Jadhav, P. M., & Reddy, N. S. K. (2018, April). Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles. In IOP Conference Series: Materials Science and Engineering (Vol. 346, No. 1, p.012007). IOP Publishing.
DOI: 10.1088/1757-899x/346/1/012007
Google Scholar
[26]
Bobzin, K. (2017). High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology, 18, 1-9.
DOI: 10.1016/j.cirpj.2016.11.004
Google Scholar
[27]
Warcholinski, B., Gilewicz, A., Myslinski, P., Dobruchowska, E., & Murzynski, D. (2020). Structure and properties of AlCrN coatings deposited using cathodic arc evaporation. Coatings, 10(8), 793.
DOI: 10.3390/coatings10080793
Google Scholar
[28]
Wadsworth, I., Smith, I. J., Donohue, L. A., & Münz, W. D. (1997). Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings. Surface and Coatings Technology, 94, 315-321.
DOI: 10.1016/s0257-8972(97)00353-8
Google Scholar
[29]
Yang, S., & Teer, D. G. (2002). Properties and performance CrTiAlN of multilayer hard coatings deposited using magnetron sputter ion plating. Surface Engineering, 18(5), 391-396.
DOI: 10.1179/026708402225006295
Google Scholar
[30]
Cadena, N. L., Cue-Sampedro, R., Siller, H. R., Arizmendi-Morquecho, A. M., Rivera-Solorio, C. I., & Di-Nardo, S. (2013). Study of PVD AlCrN coating for reducing carbide cutting tool deterioration in the machining of titanium alloys. Materials, 6(6), 2143-2154.
DOI: 10.3390/ma6062143
Google Scholar
[31]
Subramanian, B., Muraleedharan, C. V., Ananthakumar, R., & Jayachandran, M. (2011). A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surface and Coatings Technology, 205(21-22), 5014-5020.
DOI: 10.1016/j.surfcoat.2011.05.004
Google Scholar
[32]
Whitney, E. D. (2012). Ceramic cutting tools: materials, development and performance. William Andrew.
Google Scholar
[33]
Uhlmann, E., Wiemann, E., Yang, S., Krumeich, J., & Layyous, A. (1995). New coating developments for high performance cutting tools. Metal finishing, 93(5), 2-2.
Google Scholar
[34]
Puneeth, H. V., & Smitha, B. S. (2017). Studies on tool life and cutting forces for drilling operation using uncoated and coated HSS tool. International Research Journal of Engineering and Technology, 4, 1949-1954.
Google Scholar
[35]
Usca, Ü. A., Uzun, M., Şap, S., Kuntoğlu, M., Giasin, K., Pimenov, D. Y., & Wojciechowski, S. (2022). Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu–B–CrC based ceramic matrix composites. journal of materials research and technology, 16, 1243-1259.
DOI: 10.1016/j.jmrt.2021.12.063
Google Scholar
[36]
Vereschaka, A. S., Grigoriev, S. N., Tabakov, V. P., Sotova, E. S., Vereschaka, A. A., & Kulikov, M. Y. (2014). Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings. In Key Engineering Materials (Vol. 581, pp.68-73). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/kem.581.68
Google Scholar
[37]
Chowdhury, M. S. I., Bose, B., Rawal, S., Fox-Rabinovich, G. S., & Veldhuis, S. C. (2020). Wear performance investigation of PVD coated and uncoated carbide tools during high-speed machining of TiAl6V4 aerospace alloy. Wear.
DOI: 10.1016/j.wear.2019.203168
Google Scholar
[38]
Vereschaka, A. A., Grigoriev, S. N., Sitnikov, N. N., Oganyan, G. V., & Batako, A. (2017). Working efficiency of cutting tools with multilayer nano-structured Ti-TiCN-(Ti, Al) CN and Ti-TiCN-(Ti, Al, Cr) CN coatings: Analysis of cutting properties, wear mechanism and diffusion processes. Surface and Coatings Technology, 332, 198-213.
DOI: 10.1016/j.surfcoat.2017.10.027
Google Scholar
[39]
Gill, S. S., Singh, J., Singh, H., & Singh, R. (2012). Metallurgical and mechanical characteristics of cryogenically treated tungsten carbide (WC–Co). The International Journal of Advanced Manufacturing Technology, 58, 119-131.
DOI: 10.1007/s00170-011-3369-4
Google Scholar
[40]
Al-Ethari, H., Al-Dulaimi, K. Y., Warcholinski, B., & Kuznetsova, T. A. (2019). Interrelation of surface temperature and tribological characteristics of a protective coating on a tool. Journal of Friction and Wear, 40(6), 603-608.
DOI: 10.3103/s1068366619060229
Google Scholar
[41]
Costa, A. K., & Camargo Jr, S. S. (2003). Amorphous SiC coatings for WC cutting tools. Surface and coatings Technology, 163, 176-180.
DOI: 10.1016/s0257-8972(02)00486-3
Google Scholar
[42]
Yan, W., Zhang, Y., Sun, H., Liu, S., Chi, Z., Chen, X., & Xu, J. (2014). Polyimide nano composites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation. Journal of Materials Chemistry A, 2(48), 20958-20965.
DOI: 10.1039/c4ta04663c
Google Scholar
[43]
Kumar, C. S., & Patel, S. K. (2018). Application of surface modification techniques during hard turning: Present work and future prospects. International Journal of Refractory Metals and Hard Materials, 76, 112-127.
DOI: 10.1016/j.ijrmhm.2018.06.003
Google Scholar
[44]
Wang, L., Liu, Y., Chen, H., & Wang, M. (2022). Modification methods of diamond like carbon coating and the performance in machining applications: A review. Coatings, 12(2), 224.
DOI: 10.3390/coatings12020224
Google Scholar
[45]
Aditharajan, A., Radhika, N., & Saleh, B. (2022). Recent advances and challenges associated with thin film coatings of cutting tools: A critical review. Transactions of the IMF, 1-17.
DOI: 10.1080/00202967.2022.2082154
Google Scholar
[46]
Grigoriev, S., Volosova, M., Fyodorov, S., Lyakhovetskiy, M., & Seleznev, A. (2019). DLC-coating application to improve the durability of ceramic tools. Journal of Materials Engineering and Performance, 28, 4415-4426.
DOI: 10.1007/s11665-019-04149-1
Google Scholar
[47]
Natália Fernanda Santos Pereira & Juan Carlos Campos Rubio & Anderson Júnior dos Santos & Manuel Houmard & Marcelo Araújo Câmara & Alessandro Roger Rodrigues, (2019), Drilling of nodular cast iron with a novel SiO2 coating deposited by sol-gel process in HSS drill, The International Journal of Advanced Manufacturing Technology.
DOI: 10.1007/s00170-019-04429-z
Google Scholar
[48]
H.Chen and I.M. Hutchings, (1998), Abrasive wear resistance of plasma-sprayed tungsten carbide -cobalt coating, Surface and Coatings Technology, 107, pp.(106-114).
DOI: 10.1016/s0257-8972(98)00581-7
Google Scholar
[49]
Ch. Sateesh Kumar and Saroj Kumar Patel, (2018), Application of surface modification techniques during hard turning: Present work and future prospects, International Journal of Refractory Metals & Hard Materials, p.112–127.
DOI: 10.1016/j.ijrmhm.2018.06.003
Google Scholar
[50]
Midab, W. A., Al-Ethari, H., & Kareem, S. (2023, July). Improvement in wear resistance of the HSS cutting tool surface by ceramic oxides depositions. In AIP Conference Proceedings (Vol. 2830, No. 1). AIP Publishing.
DOI: 10.1063/5.0157225
Google Scholar