The Role of Ceramic Materials in Surface Modification of Cutting Tools - A Review Paper

Article Preview

Abstract:

A modification cutting tool is a type of cutting tool that can be altered or adjusted to change its cutting properties. This can include changing the angle or shape of the cutting edge, adjusting the depth of cut, or modifying the material or coating used on the tool. These modifications allow for greater precision and efficiency in cutting operations, particularly in industries for manufacturing and construction different products. Ceramic materials can be used in coatings to provide a variety of benefits, such as corrosion, wear resistance , and thermal insulation. They also offer high hardness, low friction, and chemical stability. Ceramic coatings can be applied to various substrates including metals and ceramic. Modification of cutting tools using nanomaterial deposition is a promising approach to enhance their performance and durability. The process involves depositing one or more layer of nanosized particles onto the surface of the cutting tool, which can improve its mechanical, thermal, and tribological properties. Keywords: Ceramic materials ; coating ;cutting tools; coating process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-146

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rizzo, A., Goel, S., Luisa Grilli, M., Iglesias, R., Jaworska, L., Lapkovskis, V., ... & Valerini, D. (2020). The critical raw materials in cutting tools for machining applications: A review. Materials, 13(6), 1377.‏

DOI: 10.3390/ma13061377

Google Scholar

[2] Khairnar, A., Patange, A., Pardeshi, S., & Jegadeeshwaran, R. (2021). Supervision of Carbide Tool Condition by Training of Vibration-based Statistical Model using Boosted Trees Ensemble. International Journal of Performability Engineering, 17(2).‏

DOI: 10.23940/ijpe.21.02.p7.229240

Google Scholar

[3] Vereschaka, A. S., Grigoriev, S. N., Sotova, E. S., & Vereschaka, A. A. (2013). Improving the efficiency of the cutting tools made of mixed ceramics by applying modifying nanoscale multilayered coatings. In Advanced Materials Research (Vol. 712, pp.391-394). Trans Tech Publications Ltd.‏

DOI: 10.4028/www.scientific.net/amr.712-715.391

Google Scholar

[4] Asaad M, W., Al-Ethari, H., & Kareem, S. J. (2022, November). Surface modification of cutting tool by multilayer coatings a-Review paper. In AIP Conference Proceedings (Vol. 2660, No. 1, p.020093). AIP Publishing LLC.‏

DOI: 10.1063/5.0107996

Google Scholar

[5] Vereschaka, A. A., Volosova, M. A., Batako, A., Vereschaka, A. S., Sitnikov, N. N., & Seleznev, A. E. Application of nanostructured multilayer wear-resistant coating-Features improving operational properties of cutting ceramics.‏

DOI: 10.4028/www.scientific.net/jnanor.50.90

Google Scholar

[6] Fotovvati, B., Namdari, N., & Dehghanghadikolaei, A. (2019). On coating techniques for surface protection: A review. Journal of Manufacturing and Materials processing, 3(1), 28.‏

DOI: 10.3390/jmmp3010028

Google Scholar

[7] Cao, X. Q., Vassen, R., & Stöver, D. (2004). Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 24(1), 1-10.‏

DOI: 10.1016/s0955-2219(03)00129-8

Google Scholar

[8] Soković, M., Barišić, B., & Sladić, S. (2009). Model of quality management of hard coatings on ceramic cutting tools. Journal of Materials Processing Technology, 209(8), 4207-4216.‏

DOI: 10.1016/j.jmatprotec.2008.11.026

Google Scholar

[9] Prengel, H. G., Pfouts, W. R., & Santhanam, A. T. (1998). State of the art in hard coatings for carbide cutting tools. Surface and Coatings Technology, 102(3), 183-190.‏

DOI: 10.1016/s0257-8972(96)03061-7

Google Scholar

[10] Auerkari, P. (1996). Mechanical and physical properties of engineering alumina ceramics (Vol. 23). Espoo: Technical Research Centre of Finland.‏

Google Scholar

[11] Sielski, R. A. (2008). Research needs in aluminum structure. Ships and Offshore Structures, 3(1), 57-65.‏

DOI: 10.1080/17445300701797111

Google Scholar

[12] Yao, Z. Q., Ivanisenko, Y., Diemant, T., Caron, A., Chuvilin, A., Jiang, J. Z., ... & Fecht, H. J. (2010). Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomaterialia, 6(7), 2816-2825.‏

DOI: 10.1016/j.actbio.2009.12.053

Google Scholar

[13] Normand, B., Fervel, V., Coddet, C., & Nikitine, V. (2000). Tribological properties of plasma sprayed alumina–titania coatings: role and control of the microstructure. Surface and Coatings technology, 123(2-3), 278-287.‏

DOI: 10.1016/s0257-8972(99)00532-0

Google Scholar

[14] Wang, W., Varghese, O. K., Paulose, M., Grimes, C. A., Wang, Q., & Dickey, E. C. (2004). A study on the growth and structure of titania nanotubes. Journal of materials research, 19(2), 417-422.‏

DOI: 10.1557/jmr.2004.19.2.417

Google Scholar

[15] Rezende, B. A., dos Santos, A. J., Câmara, M. A., do Carmo, D. J., Houmard, M., Rodrigues, A. R., & Campos Rubio, J. C. (2019). Characterization of ceramics coatings processed by sol-gel for cutting tools. Coatings, 9(11), 755.‏

DOI: 10.3390/coatings9110755

Google Scholar

[16] Asaad, W., Al-Ethari, H., & Kareem, S. (2022). Investigation of microstructure, morphology and properties of monolayer and multilayer coating T6-HSS by the sol–gel route. Advances in Materials and Processing Technologies, 1-27.‏

DOI: 10.1080/2374068x.2022.2129518

Google Scholar

[17] Asaad, W., Al-Ethari, H., & Kareem, S. J. (2022, July). Using Grey Relation Analysis to Improve Tool Life in Medium Carbon Steel Turning by Coating Multilayer HSS Insert. In 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp.507-513). IEEE.

DOI: 10.1109/icmae56000.2022.9852876

Google Scholar

[18] Ganvir, A., Curry, N., Björklund, S., Markocsan, N., & Nylén, P. (2015). Characterization of microstructure and thermal properties of YSZ coatings obtained by axial suspension plasma spraying (ASPS). Journal of Thermal Spray Technology, 24, 1195-1204.‏

DOI: 10.1007/s11666-015-0263-x

Google Scholar

[19] Jadhav, P. M., & Reddy, N. S. K. (2018, April). Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles. In IOP Conference Series: Materials Science and Engineering (Vol. 346, No. 1, p.012007). IOP Publishing.‏

DOI: 10.1088/1757-899x/346/1/012007

Google Scholar

[20] Dharini, T., Kuppusami, P., Panda, P., Ramaseshan, R., & Kirubaharan, A. K. (2020). Nanomechanical behaviour of Ni–YSZ nanocomposite coatings on superalloy 690 as diffusion barrier coatings for nuclear applications. Ceramics International, 46(15), 24183-24193.‏

DOI: 10.1016/j.ceramint.2020.06.198

Google Scholar

[21] Morteza Hajizadeh-Oghaz , Reza Shoja Razavi ,Ali Ghasemi, (2015), Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications, Journal of Sol-Gel Science and Technology·

DOI: 10.1007/s10971-015-3639-y

Google Scholar

[22] Asaad, W., Al-Ethari, H., & Kareem, S. J. (2023, July). Improvement the Performance of Carbide Cutting Tool by YSZ Coating, In 202314th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp.). IEEE.

DOI: 10.1109/icmae59650.2023.10424434

Google Scholar

[23] Subbarao, E. C. (1981). Zirconia-an overview. Advances in ceramics, 1, 1-24.‏

Google Scholar

[24] Vakilifard, H., Akhyani, H., & Rahimipour, M. Evaluating and Optimizing Plasma Spray Parameters on Thermal Barrier Coatings Using Response Surface Method.‏

Google Scholar

[25] Jadhav, P. M., & Reddy, N. S. K. (2018, April). Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles. In IOP Conference Series: Materials Science and Engineering (Vol. 346, No. 1, p.012007). IOP Publishing.‏

DOI: 10.1088/1757-899x/346/1/012007

Google Scholar

[26] Bobzin, K. (2017). High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology, 18, 1-9.‏

DOI: 10.1016/j.cirpj.2016.11.004

Google Scholar

[27] Warcholinski, B., Gilewicz, A., Myslinski, P., Dobruchowska, E., & Murzynski, D. (2020). Structure and properties of AlCrN coatings deposited using cathodic arc evaporation. Coatings, 10(8), 793.‏

DOI: 10.3390/coatings10080793

Google Scholar

[28] Wadsworth, I., Smith, I. J., Donohue, L. A., & Münz, W. D. (1997). Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings. Surface and Coatings Technology, 94, 315-321.‏

DOI: 10.1016/s0257-8972(97)00353-8

Google Scholar

[29] Yang, S., & Teer, D. G. (2002). Properties and performance CrTiAlN of multilayer hard coatings deposited using magnetron sputter ion plating. Surface Engineering, 18(5), 391-396.‏

DOI: 10.1179/026708402225006295

Google Scholar

[30] Cadena, N. L., Cue-Sampedro, R., Siller, H. R., Arizmendi-Morquecho, A. M., Rivera-Solorio, C. I., & Di-Nardo, S. (2013). Study of PVD AlCrN coating for reducing carbide cutting tool deterioration in the machining of titanium alloys. Materials, 6(6), 2143-2154.‏

DOI: 10.3390/ma6062143

Google Scholar

[31] Subramanian, B., Muraleedharan, C. V., Ananthakumar, R., & Jayachandran, M. (2011). A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surface and Coatings Technology, 205(21-22), 5014-5020.‏

DOI: 10.1016/j.surfcoat.2011.05.004

Google Scholar

[32] Whitney, E. D. (2012). Ceramic cutting tools: materials, development and performance. William Andrew.‏

Google Scholar

[33] Uhlmann, E., Wiemann, E., Yang, S., Krumeich, J., & Layyous, A. (1995). New coating developments for high performance cutting tools. Metal finishing, 93(5), 2-2.‏

Google Scholar

[34] Puneeth, H. V., & Smitha, B. S. (2017). Studies on tool life and cutting forces for drilling operation using uncoated and coated HSS tool. International Research Journal of Engineering and Technology, 4, 1949-1954.‏

Google Scholar

[35] Usca, Ü. A., Uzun, M., Şap, S., Kuntoğlu, M., Giasin, K., Pimenov, D. Y., & Wojciechowski, S. (2022). Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu–B–CrC based ceramic matrix composites. journal of materials research and technology, 16, 1243-1259.‏

DOI: 10.1016/j.jmrt.2021.12.063

Google Scholar

[36] Vereschaka, A. S., Grigoriev, S. N., Tabakov, V. P., Sotova, E. S., Vereschaka, A. A., & Kulikov, M. Y. (2014). Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings. In Key Engineering Materials (Vol. 581, pp.68-73). Trans Tech Publications Ltd.‏

DOI: 10.4028/www.scientific.net/kem.581.68

Google Scholar

[37] Chowdhury, M. S. I., Bose, B., Rawal, S., Fox-Rabinovich, G. S., & Veldhuis, S. C. (2020). Wear performance investigation of PVD coated and uncoated carbide tools during high-speed machining of TiAl6V4 aerospace alloy. Wear.‏

DOI: 10.1016/j.wear.2019.203168

Google Scholar

[38] Vereschaka, A. A., Grigoriev, S. N., Sitnikov, N. N., Oganyan, G. V., & Batako, A. (2017). Working efficiency of cutting tools with multilayer nano-structured Ti-TiCN-(Ti, Al) CN and Ti-TiCN-(Ti, Al, Cr) CN coatings: Analysis of cutting properties, wear mechanism and diffusion processes. Surface and Coatings Technology, 332, 198-213.‏

DOI: 10.1016/j.surfcoat.2017.10.027

Google Scholar

[39] Gill, S. S., Singh, J., Singh, H., & Singh, R. (2012). Metallurgical and mechanical characteristics of cryogenically treated tungsten carbide (WC–Co). The International Journal of Advanced Manufacturing Technology, 58, 119-131.‏

DOI: 10.1007/s00170-011-3369-4

Google Scholar

[40] Al-Ethari, H., Al-Dulaimi, K. Y., Warcholinski, B., & Kuznetsova, T. A. (2019). Interrelation of surface temperature and tribological characteristics of a protective coating on a tool. Journal of Friction and Wear, 40(6), 603-608.

DOI: 10.3103/s1068366619060229

Google Scholar

[41] Costa, A. K., & Camargo Jr, S. S. (2003). Amorphous SiC coatings for WC cutting tools. Surface and coatings Technology, 163, 176-180.‏

DOI: 10.1016/s0257-8972(02)00486-3

Google Scholar

[42] Yan, W., Zhang, Y., Sun, H., Liu, S., Chi, Z., Chen, X., & Xu, J. (2014). Polyimide nano composites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation. Journal of Materials Chemistry A, 2(48), 20958-20965.‏

DOI: 10.1039/c4ta04663c

Google Scholar

[43] Kumar, C. S., & Patel, S. K. (2018). Application of surface modification techniques during hard turning: Present work and future prospects. International Journal of Refractory Metals and Hard Materials, 76, 112-127.‏

DOI: 10.1016/j.ijrmhm.2018.06.003

Google Scholar

[44] Wang, L., Liu, Y., Chen, H., & Wang, M. (2022). Modification methods of diamond like carbon coating and the performance in machining applications: A review. Coatings, 12(2), 224.‏

DOI: 10.3390/coatings12020224

Google Scholar

[45] Aditharajan, A., Radhika, N., & Saleh, B. (2022). Recent advances and challenges associated with thin film coatings of cutting tools: A critical review. Transactions of the IMF, 1-17.‏

DOI: 10.1080/00202967.2022.2082154

Google Scholar

[46] Grigoriev, S., Volosova, M., Fyodorov, S., Lyakhovetskiy, M., & Seleznev, A. (2019). DLC-coating application to improve the durability of ceramic tools. Journal of Materials Engineering and Performance, 28, 4415-4426.‏

DOI: 10.1007/s11665-019-04149-1

Google Scholar

[47] Natália Fernanda Santos Pereira & Juan Carlos Campos Rubio & Anderson Júnior dos Santos & Manuel Houmard & Marcelo Araújo Câmara & Alessandro Roger Rodrigues, (2019), Drilling of nodular cast iron with a novel SiO2 coating deposited by sol-gel process in HSS drill, The International Journal of Advanced Manufacturing Technology.

DOI: 10.1007/s00170-019-04429-z

Google Scholar

[48] H.Chen and I.M. Hutchings, (1998), Abrasive wear resistance of plasma-sprayed tungsten carbide -cobalt coating, Surface and Coatings Technology, 107, pp.(106-114).

DOI: 10.1016/s0257-8972(98)00581-7

Google Scholar

[49] Ch. Sateesh Kumar and Saroj Kumar Patel, (2018), Application of surface modification techniques during hard turning: Present work and future prospects, International Journal of Refractory Metals & Hard Materials, p.112–127.

DOI: 10.1016/j.ijrmhm.2018.06.003

Google Scholar

[50] Midab, W. A., Al-Ethari, H., & Kareem, S. (2023, July). Improvement in wear resistance of the HSS cutting tool surface by ceramic oxides depositions. In AIP Conference Proceedings (Vol. 2830, No. 1). AIP Publishing.‏

DOI: 10.1063/5.0157225

Google Scholar