[1]
M. Yalcintas, H. Dai, Magneto-rheological and Electro-rheological Materials in Adaptive Structures and their Performance Comparison, Smart. Mater. Struct. 8 (1999) 560-573.
DOI: 10.1088/0964-1726/8/5/306
Google Scholar
[2]
M. Eshaghi, R. Sedaghati and S. Rakheja, Analytical and Experimental Free Vibration Analysis of Multi-layer MR Fluid Circular Plates under Varying Magnetic Flux, Compos. Struct. 157 (2016) 78-86.
DOI: 10.1016/j.compstruct.2016.08.024
Google Scholar
[3]
Q. Sun, X. Zhou and L. Zhang, An Adaptive Beam Model and Dynamic Characteristics of Magneto rheological Materials, J. Sound Vib. 261 (2003) 465-48.
Google Scholar
[4]
M. Romaskzo, M Wegrzynowski, FEM analysis of a cantilever sandwich beam with MR fluid based on ANSYS. SSP. 208 (2014) 63-69.
DOI: 10.4028/www.scientific.net/ssp.208.63
Google Scholar
[5]
V. Rajamohan, V. Sedaghati and S. Rakheja, Vibration Analysis of a Partially Treated Multi-Layer Beam with Magneto-rheological Fluid, J. Sound Vib. 329 (2010) 3451-3469.
DOI: 10.1016/j.jsv.2010.03.010
Google Scholar
[6]
B. Sapinski, J. Snamina, Vibration Control Capabilities of a Cantilever Beam with a Magneto-rheological Fluid, J. Mech. 27 (2008) 70-75.
Google Scholar
[7]
E. Sobhani and M. Avcar, The influence of various nanofiller materials (CNTs, GNPs, and GOPs) on the natural frequencies of Nanocomposite Cylindrical Shells: A comparative study. Mater. Today Commun. 33 (2022).
DOI: 10.1016/j.mtcomm.2022.104547
Google Scholar
[8]
Ö. Civalek and M. Avcar, Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput. 38 (2022) https://link.springer.com/article/.
DOI: 10.1007/s00366-020-01168-8
Google Scholar
[9]
Z. Du, Optimization of the free vibrations of doubly-curved sandwich panels using the artificial bee colony optimization algorithm. Multiscale Multidiscip. Model. Exp. Des. 7 (2023) 607-615.
DOI: 10.1007/s41939-023-00232-2
Google Scholar
[10]
S. Nagiredla, S. Joladarashi, and H. Kumar, Influence of magneto-rheological fluid pocket configuration on the dynamic response of the composite sandwich beam. Mech. Based Des. Struct. Machines, 52(2) (2024) 1109–1135.
DOI: 10.1080/15397734.2022.2138914
Google Scholar
[11]
YF. Xing, Y. Wu, B. Liu and AJM. Ferreira, Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method. Compos. Struct.170, (2017) 158-168.
DOI: 10.1016/j.compstruct.2017.02.092
Google Scholar
[12]
RA. Moreira and JD. Rodrigues, A Layerwise Model for Thin Soft Core Sandwich Plates, Compos. Struct. 84 (2006), 1256-1263.
DOI: 10.1016/j.compstruc.2006.01.020
Google Scholar
[13]
SP. Rahul, SB. Shinde, Layerwise Theories for Cross-Ply Laminated Composite Beam, Int. J. Eng. 14 (2014) 2277-4106.
Google Scholar
[14]
AJ. Ferreira, CMC. Roque, RMN. Jorge, and EJ. Kansa, Static Deformations and Vibration Analysis of Composite and Sandwich Plates Using a Layerwise Theory and Multiquadric discretization's, Eng. Compos. Struct. 29 (2005) 1104–1114.
DOI: 10.1016/j.enganabound.2005.07.004
Google Scholar
[15]
E. Yarali, M., Farajzadeh, R., Noroozi, A., Dabbagh, M. Khoshgoftar, M., Mirzaali Magnetorheological elastomer composites: Modeling and dynamic finite element analysis, Compos. Struct. 254(15) (2020) 112881.
DOI: 10.1016/j.compstruct.2020.113063
Google Scholar
[16]
S. Momeni, A. Zabihollah, M. Behzad, A finite element model for tapered laminated beams incorporated with magnetorheological fluid using a layerwise model under random excitations. Mech. Adv. Mater. Struct. 27 (2020) 12-19.
DOI: 10.1080/15376494.2018.1472327
Google Scholar
[17]
M. Avcar, L. Hadji and Ö. Civalek, Natural frequency analysis of sigmid functionally graded sandwich beams in the framework of high order shear deformation theory. Compos. Struct. 276 (2021) 15.
DOI: 10.1016/j.compstruct.2021.114564
Google Scholar
[18]
Z. Galias, On rigorous integration of continuous piecewise linear systems, Commun. Nonlinear Sci. Numer. 107 (2022) 106109.
DOI: 10.1016/j.cnsns.2021.106109
Google Scholar
[19]
Y. Liu, W. Hu, R. Zhu, B. Safaei, Z. Qin and F. Chu, Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact. Aerosp. Sci. Technol. 121 (2022) 107321.
DOI: 10.1016/j.ast.2021.107321
Google Scholar
[20]
S. Momeni and A. Zabihollah, Effects of base material and magnetic field on the dynamic response of MR-laminated composite structures. Mech. Based Des. Struct. 52(6) (2024) 3389-3403 https://doi.org/10.1080/15397734.2023.2201616, 1-15.
DOI: 10.1080/15397734.2023.2201616
Google Scholar