Phytochemical Characterization of Ochna integerrima roots and their In Vitro Anti-Tyrosinase Property

Article Preview

Abstract:

This research aimed to evaluate the effects of ethyl acetate (EtOAc), dichloromethane (DCM), and butanol (n-BuOH) extracts from the roots of Ochna integerrima Merr on their in vitro anti-tyrosinase enzyme activity. The phytochemical composition of these extracts was analyzed using GC-MS/MS. The EtOAc extract was particularly rich in phenols (34.38%), followed by fatty acids and derivatives (18.09%), flavonoids and chalcones (16.94%), and steroids (14.20%). Six secondary metabolites were also isolated from the active fraction (EtOAc extract) using column chromatography. Their structures were elucidated through spectroscopic techniques, primarily 1D and 2D NMR, and cross-referenced with existing literature. The findings revealed that the EtOAc extract exhibited the most significant inhibitory activity against the enzyme tyrosinase, with an IC50 value of 0.106 mg/mL. While the DCM and n-BuOH extracts showed inhibitory effects at 0.1 mg/mL concentrations, with inhibition rates of 6.34% and 26.14%, respectively. These results suggest that the root extracts of O. integerrima have potential anti-tyrosinase properties that could be beneficial in the cosmetics industry. Further investigation is required to identify and isolate additional bioactive compounds of interest.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Likhitwitayawuid, R. Rungserichai, N. Ruangrungsi, T. Phadungcharoen, Flavonoids from Ochna integerrima, Phytochemistry. 56 (2001) 353–357.

DOI: 10.1016/s0031-9422(00)00409-x

Google Scholar

[2] T. Smitinand, K. Larsen, Flora of Thailand vol. 2, Tistr Press, Bangkok, 1981.

Google Scholar

[3] Ichino, C., Kiyohara, H., Soonthornchareonnon, N., Chuakul, W., Ishiyama, A., Sekiguchi, H., Yamada, Antimalarial activity of biflavonoids from Ochna integerrima. Planta Med. 72 (2006) 611–614.

DOI: 10.1055/s-2006-931569

Google Scholar

[4] A.K.R. Bandi, D.U. Lee, R.G. Tih, D. Gunasekar, B. Bodo, Phytochemical and biological studies of Ochna species. Chem. Biodivers. 9 (2012) 251–271.

DOI: 10.1002/cbdv.201100164

Google Scholar

[5] V. Reutrakul, N. Ningnuek, M. Pohmakotr, C. Yoosook, C. Napaswad, J. Kasisit, T. Santisuk, P. Tuchinda, Anti HIV-1 flavonoid glycosides from Ochna integerrima. Planta Med. 73 (2007) 683–688.

DOI: 10.1055/s-2007-981538

Google Scholar

[6] V. Buranasudja, K. Kobtrakul, S. Vimolmangkang, A. Binalee, K. Sanookpan, T.Y. Vu, K.L.V. Huynh, B. Le, H.T. Nguyen, K.M. Do, V.S. Dang, H.M. Nguyen, Some antioxidant properties of components from the flower of Ochna integerrima and their beneficial effects on HaCaT Keratinocytes and in silico analysis on tyrosinase. Chem. Biodivers. 19 (2022) e202100882.

DOI: 10.1002/cbdv.202100882

Google Scholar

[7] N.C. Veitch, P.S. Sutton, G.C. Kite, H.E. Ireland, Six New Isoflavones and a 5-Deoxyflavonol Glycoside from the Leaves of Ateleia h erbertsmithii. J. Nat. Prod. 66 (2023) 210–216.

DOI: 10.1021/np020425u

Google Scholar

[8] H.C. Jha, F. Zilliken, E. Breitmaier, Carbon-13 chemical shift assignments of chromones and isoflavones. Can. J. Chem. 58 (1980) 1211–1219.

DOI: 10.1139/v80-189

Google Scholar

[9] K.R. Markham, B. Ternai, R. Stanley, H. Geiger, T.J. Mabry, Carbon-13 NMR studies of flavonoids—III: Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron. 34 (1978) 1389–1397.

DOI: 10.1016/0040-4020(78)88336-7

Google Scholar

[10] T. Stalin, N. Rajendiran, A study on the spectroscopy and photophysics of 4-hydroxy-3-methoxybenzoic acid in different solvents, pH and β-cyclodextrin. J. Mol. Struct. 794 (2006) 35–45.

DOI: 10.1016/j.molstruc.2006.01.038

Google Scholar

[11] T. Tukiran, F. Mahmudah, N. Hidayati, K. Shimizu, Gallic acid: A phenolic acid and its antioxidant activity from stem bark of chloroform extracts of Syzygium litorale (blume) amshoff (myrtaceae). Molekul. 11 (2016) 180–189.

DOI: 10.20884/1.jm.2016.11.2.215

Google Scholar

[12] A. Joompang, N. Jangpromma, K. Choowongkomon, W. Payoungkiattikun, A. Tankrathok, J. Viyoch, K. Luangpraditkun, S. Klaynongsruang, Evaluation of tyrosinase inhibitory activity and mechanism of Leucrocin I and its modified peptides. J. Biosci. Bioeng. 130 (2020) 239–246.

DOI: 10.1016/j.jbiosc.2020.04.002

Google Scholar

[13] I. Kubo, I. Kinst-Hori, Tyrosinase inhibitors from cumin. J. Agric. Food Chem. 46 (1998), 5338–5341.

DOI: 10.1021/jf980226+

Google Scholar

[14] W. Yi, R. Cao, W. Peng, H. Wen, Q. Yan, B. Zhou, L. Ma, H. Song, Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. Eur. J. Med. Chem. 45 (2010) 639–646.

DOI: 10.1016/j.ejmech.2009.11.007

Google Scholar

[15] D.E. Pegnyemb, R.G. Tih, B.L. Sondengam, A. Blond, B. Bodo, Flavonoids of Ochna afzelii. Phytochemistry. 64 (2003) 661–665.

DOI: 10.1016/s0031-9422(03)00267-x

Google Scholar

[16] C. Moro, I. Palacios, M. Lozano, M. D'Arrigo, E. Guillamo´n, A. Villares, J.A. Martı´nez, A. Garcı´a-Lafuente, Antiinflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 130 (2012) 350–355.

DOI: 10.1016/j.foodchem.2011.07.049

Google Scholar

[17] C. Mouffouk, S. Mouffouk, K. Oulmi, S. Mouffouk, H. Haba, In vitro photoprotective, hemostatic, anti-inflammatory and antioxidant activities of the species Linaria scariosa Desf. S. Afr. J. Bot. 130 (2020) 383–388.

DOI: 10.1016/j.sajb.2020.01.003

Google Scholar

[18] S.C. Pendota, A.R. Ndhlala, A.O. Aremu, M.A. Aderogba, J. Van Staden, Anti-inflammatory, antioxidant and in silico studies of Buddleja salviifolia (L). Lam leaf constituents. S. Afr. J. Bot. 93 (2014) 79–85.

DOI: 10.1016/j.sajb.2014.03.012

Google Scholar

[19] D.K. Patel, Potential Benefits of Tricetin in Medicine for the Treatment of Cancers and Other Health-Related Disorders: Medicinal Importance and Therapeutic Benefit. Nat. Prod. J. 12 (2022) 12–19.

DOI: 10.2174/2210315512666211221113117

Google Scholar