[1]
Al Aani S, Mustafa TN, Hilal N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Vol. 35, Journal of Water Process Engineering. Elsevier Ltd; 2020.
DOI: 10.1016/j.jwpe.2020.101241
Google Scholar
[2]
Abidin NHZ, Sambudi NS, Kamal NA. Composite of hydroxyapatite-fe3o4 for the adsorption of methylene blue. ASEAN Journal of Chemical Engineering. 2020;20(2):140–53.
DOI: 10.22146/ajche.55015
Google Scholar
[3]
Dotto J, Fagundes-Klen MR, Veit MT, Palácio SM, Bergamasco R. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J Clean Prod. 2019 Jan 20;208:656–65.
DOI: 10.1016/j.jclepro.2018.10.112
Google Scholar
[4]
Bharti V, Vikrant K, Goswami M, Tiwari H, Sonwani RK, Lee J, et al. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ Res. 2019 Apr 1;171:356–64.
DOI: 10.1016/j.envres.2019.01.051
Google Scholar
[5]
Rajalakshmi TU, Alagumuthu G. Enhanced Role of Biopolymers in the Photocatalysis of Metal oxide doped Biopolymer Nanocomposites upon Methylene blue and Congo red dyes. Vol. 9, International Journal of All Research Education and Scientific Methods (IJARESM). 2021.
Google Scholar
[6]
Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, Johan MR. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. Vol. 5, ACS Omega. American Chemical Society; 2020. p.20684–97.
DOI: 10.1021/acsomega.0c01905
Google Scholar
[7]
Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J Colloid Interface Sci. 2018 Dec 15;532:236–60.
DOI: 10.1016/j.jcis.2018.07.118
Google Scholar
[8]
Rostam AB, Taghizadeh M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review. Vol. 8, Journal of Environmental Chemical Engineering. Elsevier Ltd; 2020.
DOI: 10.1016/j.jece.2020.104566
Google Scholar
[9]
Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, et al. Recent advances and applications of semiconductor photocatalytic technology. Vol. 9, Applied Sciences (Switzerland). MDPI AG; 2019.
Google Scholar
[10]
Zeng X, Wang Z, Wang G, Gengenbach TR, McCarthy DT, Deletic A, et al. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl Catal B. 2017;218:163–73.
DOI: 10.1016/j.apcatb.2017.06.055
Google Scholar
[11]
Khanna A, Shetty VK. Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@TiO2 core-shell nanoparticles: A comparison with UV photocatalysis. Solar Energy. 2014 Jan;99:67–76.
DOI: 10.1016/j.solener.2013.10.032
Google Scholar
[12]
Ahmed B, Kumar S, Ojha AK, Donfack P, Materny A. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim Acta A Mol Biomol Spectrosc. 2017 Mar 15;175:250–61.
DOI: 10.1016/j.saa.2016.11.044
Google Scholar
[13]
Nagarjuna R, Challagulla S, Sahu P, Roy S, Ganesan R. Polymerizable sol–gel synthesis of nano-crystalline WO3 and its photocatalytic Cr(VI) reduction under visible light. Advanced Powder Technology. 2017 Dec 1;28(12):3265–73.
DOI: 10.1016/j.apt.2017.09.030
Google Scholar
[14]
Song C, Wang X, Zhang J, Chen X, Li C. Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light. Appl Surf Sci. 2017 Dec 15;425:788–95.
DOI: 10.1016/j.apsusc.2017.07.082
Google Scholar
[15]
Wang C, Li X, Feng C, Sun Y, Lu G. Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis, characterization, and their gas sensing properties. Sens Actuators B Chem. 2015;210:75–81.
DOI: 10.1016/j.snb.2014.12.020
Google Scholar
[16]
Mehmood F, Iqbal J, Jan T, Gul A, Mansoor Q, Faryal R. Structural, photoluminescence, electrical, anti cancer and visible light driven photocatalytic characteristics of Co doped WO3 nanoplates. Vib Spectrosc. 2017 Nov 1;93:78–89.
DOI: 10.1016/j.vibspec.2017.09.005
Google Scholar
[17]
Praus P, Svoboda L, Dvorský R, Reli M, Kormunda M, Mančík P. Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram Int. 2017 Nov 1;43(16):13581–91.
DOI: 10.1016/j.ceramint.2017.07.067
Google Scholar
[18]
Ezugbe EO, Rathilal S. Membrane technologies in wastewater treatment: A review. Vol. 10, Membranes. MDPI AG; 2020.
DOI: 10.3390/membranes10050089
Google Scholar
[19]
Kallem P, Bharath G, Rambabu K, Srinivasakannan C, Banat F. Improved permeability and antifouling performance of polyethersulfone ultrafiltration membranes tailored by hydroxyapatite/boron nitride nanocomposites. Chemosphere. 2021 Apr 1;268.
DOI: 10.1016/j.chemosphere.2020.129306
Google Scholar
[20]
Chen M, Sun Q, Zhou Y, Cui Z, Wang Z, Xing W. Preparation of PVDF membrane via synergistically vapor and non-solvent-induced phase separation. Appl Water Sci. 2022 Jul 1; 12(7).
DOI: 10.1007/s13201-022-01683-7
Google Scholar
[21]
Peyravi M, Jahanshahi M, Khalili S. Fouling of WO3 nanoparticle-incorporated PSf membranes in ultrafiltration of landfill leachate and dairy a combined wastewaters: An investigation using model. Chin J Chem Eng. 2017 Jun 1;25(6):741–51.
DOI: 10.1016/j.cjche.2016.12.001
Google Scholar
[22]
Akhi H, Vatanpour V, Zakeri F, Khataee A. Modification of EPVC membranes by incorporating tungsten trioxide (WO3) nanosheets to improve antifouling and dye separation properties. Journal of Industrial and Engineering Chemistry. 2021 Dec 25;104:186–202.
DOI: 10.1016/j.jiec.2021.08.020
Google Scholar
[23]
Xu Z, Wu T, Shi J, Teng K, Wang W, Ma M, et al. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J Memb Sci. 2016 Dec 15;520:281–93.
DOI: 10.1016/j.memsci.2016.07.060
Google Scholar
[24]
Padmanabhan NT, John H. Titanium dioxide based self-cleaning smart surfaces: A short review. Vol. 8, Journal of Environmental Chemical Engineering. Elsevier Ltd; 2020.
DOI: 10.1016/j.jece.2020.104211
Google Scholar
[25]
Li Z, Luan Y, Qu Y, Jing L. Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O2. ACS Appl Mater Interfaces. 2015 Oct 21; 7(41): 22727–40.
DOI: 10.1021/acsami.5b04267
Google Scholar
[26]
Nguyen TT, Nam SN, Son J, Oh J. Tungsten Trioxide (WO3)-assisted Photocatalytic Degradation of Amoxicillin by Simulated Solar Irradiation. Sci Rep. 2019 Dec 1;9(1).
DOI: 10.1038/s41598-019-45644-8
Google Scholar
[27]
Mun SJ, Park SJ. Graphitic carbon nitride materials for photocatalytic hydrogen production via water splitting: A short review. Vol. 9, Catalysts. MDPI; 2019.
DOI: 10.3390/catal9100805
Google Scholar
[28]
Kusworo TD, Budiyono, Kumoro AC, Utomo DP. Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review. J Environ Manage. 2022 Sep 1;317.
DOI: 10.1016/j.jenvman.2022.115357
Google Scholar
[29]
Andrade Neto NF, Lima AB, Wilson RRYOV, Nicacio TCN, Bomio MRD, Motta F V. Heterostructures obtained by ultrasonic methods for photocatalytic application: A review. Vol. 139, Materials Science in Semiconductor Processing. Elsevier Ltd; 2022.
DOI: 10.1016/j.mssp.2021.106311
Google Scholar
[30]
Pang X, Xue S, Zhou T, Xu Q, Lei W. 2D/2D nanohybrid of Ti3C2 MXene/WO3 photocatalytic membranes for efficient water purification. Ceram Int. 2022 Feb 1;48(3):3659–68.
DOI: 10.1016/j.ceramint.2021.10.147
Google Scholar
[31]
Shehab MA, Sharma N, Karacs G, Nánai L, Kocserha I, Hernadi K, et al. Development and Investigation of Photoactive WO3 Nanowire-Based Hybrid Membranes. Catalysts. 2022 Sep 1;12(9).
DOI: 10.3390/catal12091029
Google Scholar
[32]
Rathna T, PonnanEttiyappan J, Sudhakar DR. TiO2-WO3 nanocube-polyaniline hierarchical membrane for efficient removal of chromium in a photocatalytic membrane reactor. Water and Environment Journal. 2023 Jun 28
DOI: 10.1111/wej.12890
Google Scholar
[33]
Lee XJ, Show PL, Katsuda T, Chen WH, Chang JS. Surface grafting techniques on the improvement of membrane bioreactor: State-of-the-art advances. Vol. 269, Bioresource Technology. Elsevier Ltd; 2018. p.489–502.
DOI: 10.1016/j.biortech.2018.08.090
Google Scholar
[34]
Pejman M, Dadashi Firouzjaei M, Aghapour Aktij S, Zolghadr E, Das P, Elliott M, et al. Effective strategy for UV-mediated grafting of biocidal Ag-MOFs on polymeric membranes aimed at enhanced water ultrafiltration. Chemical Engineering Journal. 2021 Dec 15;426.
DOI: 10.1016/j.cej.2021.130704
Google Scholar
[35]
Kusworo TD, Kumoro AC, Yulfarida M. A new visible-light driven photocatalytic PVDF-MoS2@WO3 membrane for clean water recovery from natural rubber wastewater. Journal of Water Process Engineering. 2023 Apr;52:103522.
DOI: 10.1016/j.jwpe.2023.103522
Google Scholar
[36]
Koyuncu I, Eryildiz B, Kaya R, Karakus Y, Zakeri F, Khataee A, et al. Modification of reinforced hollow fiber membranes with WO3 nanosheets for treatment of textile wastewater by membrane bioreactor. J Environ Manage. 2023 Jan 15;326.
DOI: 10.1016/j.jenvman.2022.116758
Google Scholar
[37]
Soomro F, Memon FH, Khan MA, Iqbal M, Ibrar A, Memon AA, et al. Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. Membranes (Basel). 2023 Jan 1; 13(1).
DOI: 10.3390/membranes13010064
Google Scholar
[38]
Dolatshah M, Zinatizadeh AA, Zinadini S, Zangeneh H. Preparation, characterization and performance assessment of antifouling L-Lysine (C, N codoped)-TiO2/WO3-PES photocatalytic membranes: A comparative study on the effect of blended and UV-grafted nanophotocatalyst. J Environ Chem Eng. 2022 Dec 1;10(6).
DOI: 10.1016/j.jece.2022.108658
Google Scholar
[39]
Dolatshah M, Zinatizadeh AA, Zinadini S, Zangeneh H. A new UV-grafted photocatalytic membrane for advanced treatment of biologically treated baker's yeast (BTY) effluent: Fabrication, characterization and performance evaluation. Process Safety and Environmental Protection. 2023 Feb 1;170:608–22.
DOI: 10.1016/j.psep.2022.11.060
Google Scholar
[40]
Kusworo TD, Wulandari LM. Fabrication of High Performance PSf-rGO/TiO2 UF Membrane for Ruberry Wastewater Treatment. IOP Conf Ser Mater Sci Eng. 2021 Feb 1;1053(1):012025.
DOI: 10.1088/1757-899x/1053/1/012025
Google Scholar
[41]
Shafaei N, Peyravi M, Jahanshahi M. Improving surface structure of photocatalytic self-cleaning membrane by WO3/PANI nanoparticles. Polym Adv Technol. 2016 Oct 1;27(10): 1325–37.
DOI: 10.1002/pat.3800
Google Scholar
[42]
Han DS, Elshorafa R, Yoon SH, Kim S, Park H, Abdel-Wahab A. Sunlight-charged heterojunction TiO2 and WO3 particle-embedded inorganic membranes for night-time environmental applications. Photochemical and Photobiological Sciences. 2018;17(4):491–8.
DOI: 10.1039/c7pp00451f
Google Scholar
[43]
Zhang H, Liu B. Preparation, Characterization, and Photocatalytic Properties of Self-Standing Pure and Cu-Doped TiO Nanobelt Membranes. ACS Omega. 2021 Feb 23;6(7):4534–41.
DOI: 10.1021/acsomega.0c03873
Google Scholar
[44]
Kazemi M, Jahanshahi M, Peyravi M. Chitosan-sodium alginate multilayer membrane developed by Feo@WO3 nanoparticles: Photocatalytic removal of hexavalent chromium. Carbohydr Polym. 2018 Oct 15;198:164–74.
DOI: 10.1016/j.carbpol.2018.06.069
Google Scholar