Enhancement of ODMR Contrasts of Silicon Vacancy in SiC by Thermal Treatment

Article Preview

Abstract:

We demonstrated the enhancement of the optically detected magnetic resonance (ODMR) contrast of negatively charged silicon vacancy (VSi-) in SiC by thermal treatment. To create high density VSi-, Proton Beam Writing (PBW) was conducted. After an annealing at 600 °C, ODMR contrast showed the highest value in the investigated temperature range. At a fewer irradiation fluence, despite no significant change was observed in terms of VSi- PL intensity, the improvement of the ODMR contrast was observed. Considering defect energy levels and annealing behavior previously reported, it was deduced that the improvement of the ODMR contrast was caused by the reduction of other irradiation induced defect centers, such as EH1/EH3 centers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

337-342

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Balasubramanian1, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko and J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature 455 (2008) 648-651.

DOI: 10.1038/nature07278

Google Scholar

[2] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, (2011) 84-87.

DOI: 10.1038/nature10562

Google Scholar

[3] S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali and T. Ohshima, A silicon carbide room-temperature single-photon source, Nat. Mater. 13 (2014) 151-156.

DOI: 10.1038/nmat3806

Google Scholar

[4] F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov and G. V. Astakhov, Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide, Nat. Commun. 6 (2015) 7578.

DOI: 10.1038/ncomms8578

Google Scholar

[5] H. Kraus, D. Simin, C. Kasper, Y. Suda, S. Kawabata, W. Kada, T. Honda, Y. Hijikata, T. Ohshima, V. Dyakonov and G.V. Astakhov, Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide, Nano Lett. 17 (2017) 2865-2870.

DOI: 10.1021/acs.nanolett.6b05395

Google Scholar

[6] Y. Yamazaki, Y. Chiba, T. Makino, S.-I. Sato, N. Yamada, T. Satoh, Y. Hijikata, K. Kojima, S.-Y. Lee and T. Ohshima, Electrically controllable position-controlled color centers created in SiC pn junction diode by proton beam writing, J. Mater. Res. 33 (2018) 3355-3361.

DOI: 10.1557/jmr.2018.302

Google Scholar

[7] T. Ohshima, T. Satoh, H. Kraus, G. V. Astakhov, V. Dyakonov and P. G. Baranov, Creation of silicon vacancy in silicon carbide by proton beam writing toward quantum sensing applications, J. Phys. D 51 (2018) 333002.

DOI: 10.1088/1361-6463/aad0ec

Google Scholar

[8] K. Jansen, V. M. Acosta, A. Jarmola and D. Budker, Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond, Phys. Rev. B 87 (2013) 014115.

DOI: 10.1103/physrevb.87.014115

Google Scholar

[9] M. Rühl, C. Ott, S. Götzinger, M. Krieger and H. B. Weber, Controlled generation of intrinsic near-infrared color centers in 4H-SiC via proton irradiation and annealing, Appl. Phys. Lett. 113 (2018) 122102.

DOI: 10.1063/1.5045859

Google Scholar

[10] SRIM the stopping and range of ions in matter: Information on http://www.srim.org/.

Google Scholar

[11] TIARA: Information on http://www.taka.qst.go.jp/tiara/tiara/index_j.php.

Google Scholar

[12] H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov and G. V. Astakhov, Room-temperature quantum microwave emitters based on spin defects in silicon carbide 10 (2014) 157-162.

DOI: 10.1038/nphys2826

Google Scholar

[13] P. G. Baranov, A. P. Bundakova, S. B. Orlinskii, I. V. Borovykh, R. Zondervan, R. Verberk, J. Schmidt and A. A. Soltamova, Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy, Phys. Rev. B 83 (2011) 125203.

DOI: 10.1103/physrevb.83.125203

Google Scholar

[14] M. Bockstedte, A. Mattausch and O. Pankratov, Ab initio study of the annealing of vacancies and interstitials in cubic SiC: Vacancy-interstitial recombination and aggregation of carbon interstitials, Phys. Rev. B 69 (2004) 235202.

DOI: 10.1103/physrevb.69.235202

Google Scholar

[15] J-F. Wang, Q. Li, F-F. Yan, H. Liu, G-P. Guo, W-P. Zhang, X. Zhou, L-P. Guo, Z-H. Lin, J-M. Cui, X-Y. Xu, J-S. Xu, C-F. Li, and G-C. Guo, ACS Photonics 6 (2019) 1736-1743.

DOI: 10.1021/acsphotonics.9b00451

Google Scholar

[16] Z. Long, F. Gao and W. J. Weber, Monte Carlo simulations of defect recovery within a 10 keV collision cascade in 3C-SiC, J. Appl. Phys. 102 (2007) 103507.

DOI: 10.1063/1.2812701

Google Scholar

[17] C. Kasper, D. Klenkert, Z. Shang, D. Simin, A. Sperlich, H. Kraus, C. Schneider, S. Zhou, M. Trupke, W. Kada, T. Ohshima, V. Dyakonov, and G. V. Astakhov, Influence of irradiation on defect spin coherence in silicon carbide, arXiv:1908.06829.

DOI: 10.1103/physrevapplied.13.044054

Google Scholar

[18] L. Storasta, J. P. Bergman, E. Janzén and A. Henry, Deep levels created by low energy electron irradiation in 4H-SiC, J. Appl. Phys. 96 (2004) 4909-4915.

DOI: 10.1063/1.1778819

Google Scholar

[19] E. Janzén, A. Gali, P. Carlsson, A. Gällström, B. Magnusson and N. T. Son, The silicon vacancy in SiC, Physica B 404 (2009) 4354-4358.

DOI: 10.1016/j.physb.2009.09.023

Google Scholar