Thermal and Dynamic Mechanical Behaviours of CCTO/ENR-25 Composite

Article Preview

Abstract:

A study on polymer-ceramic composite, CaCu3Ti4O12 (CCTO) embedded in epoxidised natural rubber (ENR-25) were successfully fabricated through mixing method using an internal mixer and two-roll mill followed by hot-pressed via compression moulding for a potential electronic device such as a flexible capacitor. CCTO powders were successfully synthesised through a solid-state reaction and calcined at 900 °C for 12 hours. The ENR-25 was blended with 0, 20, 40, 60, 80, 100, and 120 phr (part per hundreds of rubber) of CCTO powders. Thermal stability and degradation are crucial properties for the composite based polymer. Therefore, thermogravimetric and differential scanning calorimetry (TGA/DSC) used to find out the thermal reaction and degradation mechanism of CCTO/ENR-25 composites. Besides, dynamic mechanical analysis (DMA) also used to investigate glass transition temperature (Tg) and storage modulus. TGA/DSC showed a two-step degradation mechanism with increasing thermal stability over increasing filler content of CCTO and only showed a major endothermic reaction. However, for DMA there is no significant difference in Tg value between each composite but showed high storage modulus up to 4398 MPa for 120 phr. High storage modulus indicates the high stiffness of the composite. In conclusion, the addition of filler content will show high thermal stability, storage modulus, and stiffness of CCTO/ENR-25 composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

274-279

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Saidina, D. S., Norshamira, A. & Mariatti, M. Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods. J. Mater. Sci. Mater. Electron. 26 (2015) 8118–8129.

DOI: 10.1007/s10854-015-3471-8

Google Scholar

[2] González, N. et al. Dielectric response of vulcanized natural rubber containing BaTiO3filler: The role of particle functionalization. Eur. Polym. J. 97 (2017) 57–67.

Google Scholar

[3] Khumpaitool, B., Utara, S. & Jantachum, P. Thermal and mechanical properties of an epoxidized natural rubber composite containing a Li/Cr co-doped NiO-based filler. J. Met. Mater. Miner. 28 (2018).

Google Scholar

[4] Krainoi, A. et al. Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym. Test. 66 (2018) 122–136.

DOI: 10.1016/j.polymertesting.2018.01.003

Google Scholar

[5] Thomas, P., Varughese, K. T., Dwarakanath, K. & Varma, K. B. R. Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12composites. Compos. Sci. Technol. 70 (2010) 539–545.

DOI: 10.1016/j.compscitech.2009.12.014

Google Scholar

[6] Salaeh, S., Muensit, N., Bomlai, P. & Nakason, C. Ceramic/natural rubber composites: Influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. J. Mater. Sci. 46 (2011) 1723–1731.

DOI: 10.1007/s10853-010-4990-6

Google Scholar

[7] Sulaiman, M. A., Panwiriyarat, W., Jie, B. L. C., Masri, M. N. & Yusuff, M. Mechanical and Electrical Properties of TiO2 Loaded Vulcanized Natural Rubber. Int. J. Electroact. Mater. 4 (2016) 39–43.

Google Scholar

[8] Karim, S. A., Sulaiman, M. A., Masri, M. N., Ahmad, Z. A. & Ain, M. F. The Dielectric Properties of CaCu3Ti4O12 at Various Calcination Temperatures. Mater. Sci. Forum 888 (2017) 117–120.

DOI: 10.4028/www.scientific.net/msf.888.117

Google Scholar

[9] Subramanian, M. A., Li, D., Duan, N., Reisner, B. A. & Sleight, A. W. High dielectric constant in ACu3Ti4O12and ACu3Ti3FeO12phases. J. Solid State Chem. 151 (2000) 323–325.

DOI: 10.1006/jssc.2000.8703

Google Scholar

[10] Callister, W. D. J. & Rethwisch, D. G. Materials Science and Engineering : An Introduction. nineth ed., John Wiley & Sons, Inc., United States of America, (2014).

Google Scholar

[11] Karim, S. A. et al. Microstructure and dielectric properties of silicone rubber/CCTO composites. AIP Conf. Proc. 2068 (2019).

Google Scholar

[12] George, S., Varughese, K. T. & Thomas, S. Dielectric properties of isotactic polypropylene/nitrile rubber blends: Effects of blend ratio, filler addition, and dynamic vulcanization. J. Appl. Polym. Sci. 73 (1999) 255–270.

DOI: 10.1002/(sici)1097-4628(19990711)73:2<255::aid-app12>3.0.co;2-b

Google Scholar

[13] Ruan, M. et al. Improved dielectric properties, mechanical properties, and thermal conductivity properties of polymer composites via controlling interfacial compatibility with bio-inspired method. Appl. Surf. Sci. 439 (2018) 186–195.

DOI: 10.1016/j.apsusc.2017.12.250

Google Scholar

[14] Lawandy, S. N. & Abd‐El‐Nour, K. N. Dielectric properties and stress–strain measurements of chloroprene rubber based on different carbon black fillers. J. Appl. Polym. Sci. 31, (1986) 841–848.

DOI: 10.1002/app.1986.070310308

Google Scholar

[15] Gelling, I. R. Modification of natural rubber latex with peracetic acid. Rubber Chemistry and Technology 58 (1985) 86–96.

DOI: 10.5254/1.3536060

Google Scholar

[16] Chuayjuljit, S., Nutchapong, T. & Saravari, O. Preparation and Characterization of Epoxidized Natural Rubber and Epoxidized Natural Rubber / Carboxylated Styrene Butadiene Rubber Blends. J. Met. Mater. Miner. 25 (2015) 27–36.

DOI: 10.1016/j.polymertesting.2009.11.002

Google Scholar

[17] Auge, B. et al. Viscoelasticity and dynamic mechanical testing. Ann. Pediatr. (Paris). 40 (1993) 613–621.

Google Scholar

[18] Yunus, N. A. et al. Thermal stability and rheological properties of epoxidized natural rubber-based magnetorheological elastomer. Int. J. Mol. Sci. 20 (2019) 1–19.

DOI: 10.3390/ijms20030746

Google Scholar

[19] Sui, G., Zhong, W. H., Yang, X. P. & Yu, Y. H. Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater. Sci. Eng. A 485 (2008) 524–531.

DOI: 10.1016/j.msea.2007.09.007

Google Scholar

[20] Formela, K., Wąsowicz, D., Formela, M., Hejna, A. & Haponiuk, J. Curing characteristics, mechanical and thermal properties of reclaimed ground tire rubber cured with various vulcanizing systems. Iran. Polym. J. English Ed. 24 (2015) 289–297.

DOI: 10.1007/s13726-015-0320-9

Google Scholar

[21] Chonkaew, W., Minghvanish, W., Kungliean, U., Rochanawipart, N. & Brostow, W. Vulcanization Characteristics and Dynamic Mechanical Behavior of Natural Rubber Reinforced with Silane Modified Silica. J. Nanosci. Nanotechnol. 11, (2011) 2018–(2024).

DOI: 10.1166/jnn.2011.3563

Google Scholar