Thermal Analysis of Ca1+xCu3Ti4O12+x Precursor in Nitrogen and Oxygen Environment at 1000 °C

Article Preview

Abstract:

The thermal kinetic analyses are prepared on Ca1+xCu3Ti4O12+x powders using simultaneous thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) measurement in a dual atmospheric gases environment. Initially, the nitrogen gas flowed from room temperature to 1000 °C, and then the environment was shifted and hold for 1 hour with oxygen. The result shows that the TGA patterns of the temperature and mass loss are disorderly with x values. The mass loss % patterns slightly decreased with increased additional Ca-based element. The decreased of oxygen absorption as the values of x increased also can be explained by the reduction of single-phase CCTO structure when excess Ca ions. The DSC pattern shows two prominent endothermic peaks and two exothermic peaks that relate to the melting point of the reactant and crystalline phase changes of samples, while the significant endothermic peak at 1000 °C is corresponding to the formation of CCTO compounds as identified by XRD analysis.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1010)

Pages:

268-273

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Subramanian, L. Dong, N. Duan, B.A. Reisner, A.W. Sleight, High Dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem, 151 (2000) 323.

DOI: 10.1006/jssc.2000.8703

Google Scholar

[2] J. Valo, M. Leskela, Handbook of Thermal Analysis and Calorimetry, Vol.2 Application to Inorganic materials, Elsevier, Amsterdam,2003, Chap 15.

Google Scholar

[3] S. F. Shao, J. L. Zhang, P. Zheng, and C. L.Wang, Effect of Cu stoichiometry on the dielectric and electric properties in CaCu3Ti4O12 ceramics, Solid. State. Commun. 142 (2007) 281–286.

DOI: 10.1016/j.ssc.2007.02.025

Google Scholar

[4] M.H. Wangbo, and M. A. Subramanian, Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant, Chem. Mater. 18 (2006) 3257–3260.

DOI: 10.1021/cm060323f

Google Scholar

[5] J. Li, A.W. Sleight, and M. A. Subramanian, Evidence for internal resistive barriers in a crystal of the giant dielectric constant material CaCu3Ti4O12, Solid State Commun. 135 (2005) 260.

DOI: 10.1016/j.ssc.2005.04.028

Google Scholar

[6] J. J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, & J. F. Fernández, Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics, J. Eur. Ceram. Soc. 30(3) (2010). 737-742.

DOI: 10.1016/j.jeurceramsoc.2009.08.024

Google Scholar

[7] Q. Yin, J. Kniep, & Y. S. Lin, High temperature air separation by perovskite-type oxide sorbents–Heat effect minimization, Chem. Eng. Sci. 63(24) (2008) 5870-5875.

DOI: 10.1016/j.ces.2008.09.004

Google Scholar

[8] Y.S. Lin, D.L. McLean, Y. Zeng, High temperature adsorption process, U.S. Patent 6059858. (2000).

Google Scholar

[9] Z.H. Yang, Y.S. Lin, A semi-empirical equation for oxygen nonstoichiometry of perovskite-type ceramics, Solid. State. Ion. 150 (3–4) (2002) 245–254.

DOI: 10.1016/s0167-2738(02)00524-6

Google Scholar

[10] Z. H. Yang, & Y. S. Lin, Synergetic thermal effects for oxygen sorption and order–disorder transition on perovskite-type oxides, Solid State Ion. 176(1-2) (2005) 89-96.

DOI: 10.1016/j.ssi.2004.06.011

Google Scholar

[11] J. Mizusaki, M. Yoshihiro, S. Yamauchi, Nonstoichiometry and defect structure of the perovskite-type oxide Ls1−xSrxCo3−δ, J. Solid State Chem. 58 (2) (1985) 257–266.

DOI: 10.1016/0022-4596(85)90243-9

Google Scholar

[12] W. Tao, F. Fei, W. Yue-Chuan, Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites, Polyme.r Bulletin. 56(4-5) (2006) 413-426.

DOI: 10.1007/s00289-006-0506-6

Google Scholar

[13] X. G. Li, Y. Lv, B. G. Ma, W. Q. Wang, & S. W. Jian, Decomposition kinetic characteristics of calcium carbonate containing organic acids by TGA, Arab. J. Chem. 10 (2017) 2534-2538.

DOI: 10.1016/j.arabjc.2013.09.026

Google Scholar

[14] T. R. Rao, Kinetics of calcium carbonate decomposition, Chem. Eng. Technol. 19(4) (1996) 373-377.

Google Scholar

[15] L. T. Mei, H. I. Hsiang, & T. T Fang, Effect of copper‐rich secondary phase at the grain boundaries on the varistor properties of CaCu3Ti4O12 ceramics, J. Am. Ceram. 91(11), (2008),3735-3737.

DOI: 10.1111/j.1551-2916.2008.02674.x

Google Scholar

[16] C.Homes, T. Vogt, S. Shapiro, S. Wakimoto, M. Subramanian, A. Ramirez, Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12, Physical. Review. B. 67(9), (2003), 092106.

Google Scholar