[1]
M.A. Subramanian, L. Dong, N. Duan, B.A. Reisner, A.W. Sleight, High Dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem, 151 (2000) 323.
DOI: 10.1006/jssc.2000.8703
Google Scholar
[2]
J. Valo, M. Leskela, Handbook of Thermal Analysis and Calorimetry, Vol.2 Application to Inorganic materials, Elsevier, Amsterdam,2003, Chap 15.
Google Scholar
[3]
S. F. Shao, J. L. Zhang, P. Zheng, and C. L.Wang, Effect of Cu stoichiometry on the dielectric and electric properties in CaCu3Ti4O12 ceramics, Solid. State. Commun. 142 (2007) 281–286.
DOI: 10.1016/j.ssc.2007.02.025
Google Scholar
[4]
M.H. Wangbo, and M. A. Subramanian, Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant, Chem. Mater. 18 (2006) 3257–3260.
DOI: 10.1021/cm060323f
Google Scholar
[5]
J. Li, A.W. Sleight, and M. A. Subramanian, Evidence for internal resistive barriers in a crystal of the giant dielectric constant material CaCu3Ti4O12, Solid State Commun. 135 (2005) 260.
DOI: 10.1016/j.ssc.2005.04.028
Google Scholar
[6]
J. J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, & J. F. Fernández, Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics, J. Eur. Ceram. Soc. 30(3) (2010). 737-742.
DOI: 10.1016/j.jeurceramsoc.2009.08.024
Google Scholar
[7]
Q. Yin, J. Kniep, & Y. S. Lin, High temperature air separation by perovskite-type oxide sorbents–Heat effect minimization, Chem. Eng. Sci. 63(24) (2008) 5870-5875.
DOI: 10.1016/j.ces.2008.09.004
Google Scholar
[8]
Y.S. Lin, D.L. McLean, Y. Zeng, High temperature adsorption process, U.S. Patent 6059858. (2000).
Google Scholar
[9]
Z.H. Yang, Y.S. Lin, A semi-empirical equation for oxygen nonstoichiometry of perovskite-type ceramics, Solid. State. Ion. 150 (3–4) (2002) 245–254.
DOI: 10.1016/s0167-2738(02)00524-6
Google Scholar
[10]
Z. H. Yang, & Y. S. Lin, Synergetic thermal effects for oxygen sorption and order–disorder transition on perovskite-type oxides, Solid State Ion. 176(1-2) (2005) 89-96.
DOI: 10.1016/j.ssi.2004.06.011
Google Scholar
[11]
J. Mizusaki, M. Yoshihiro, S. Yamauchi, Nonstoichiometry and defect structure of the perovskite-type oxide Ls1−xSrxCo3−δ, J. Solid State Chem. 58 (2) (1985) 257–266.
DOI: 10.1016/0022-4596(85)90243-9
Google Scholar
[12]
W. Tao, F. Fei, W. Yue-Chuan, Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites, Polyme.r Bulletin. 56(4-5) (2006) 413-426.
DOI: 10.1007/s00289-006-0506-6
Google Scholar
[13]
X. G. Li, Y. Lv, B. G. Ma, W. Q. Wang, & S. W. Jian, Decomposition kinetic characteristics of calcium carbonate containing organic acids by TGA, Arab. J. Chem. 10 (2017) 2534-2538.
DOI: 10.1016/j.arabjc.2013.09.026
Google Scholar
[14]
T. R. Rao, Kinetics of calcium carbonate decomposition, Chem. Eng. Technol. 19(4) (1996) 373-377.
Google Scholar
[15]
L. T. Mei, H. I. Hsiang, & T. T Fang, Effect of copper‐rich secondary phase at the grain boundaries on the varistor properties of CaCu3Ti4O12 ceramics, J. Am. Ceram. 91(11), (2008),3735-3737.
DOI: 10.1111/j.1551-2916.2008.02674.x
Google Scholar
[16]
C.Homes, T. Vogt, S. Shapiro, S. Wakimoto, M. Subramanian, A. Ramirez, Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12, Physical. Review. B. 67(9), (2003), 092106.
Google Scholar