Study of Strength and Deformation Properties of the Composite Reinforcing Bar from the Continuous Basalt Fiber

Article Preview

Abstract:

Composite structures require the use of modern reinforcing materials combining high strength characteristics and resistance to aggressive influences with low weight. One of the promising materials for the production of reinforcing products is basalt roving. The high strength of the thread in combination with fragility imposes certain limitations on its placement in the material, and requires new approaches to the design of the reinforcing bar itself. The article investigates the strength characteristics of a composite reinforcing bar made of a basalt complex thread proposed by the authors. The features of the test procedure and the mechanical characteristics of the reinforcing material are described. The effectiveness of the applied test method developed in the process of testing reinforcing rods is shown. An increase in the tensile strength of a composite reinforcing bar based on basalt fiber is established in comparison with products from fiber and roving.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1013)

Pages:

132-138

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACE 440.1R.06.

Google Scholar

[2] A. K. Kychkin, А. А. Vasilyeva Investigation of physical and mechanical characteristics of composite reinforcement/ bars made on the basis of basalt roving// Vestnik Severo-Vostochnogo Federalnogo universiteta im. М.К. Ammosova Т. 9 № 3 (2012). 80-85.

Google Scholar

[3] Dalinkevich A.A., Gumargalieva K.Z., Soukhanov A.V., Marakhocsky S.S.// Korrozia: materialy, zashita. № 4 (2015) 37-42.

Google Scholar

[4] Kustikova Yu.O. Issledovanie svoystv bazal'toplastikovoy armatury i ee stsepleniya s betonom [Investigation of basalt plastic reinforcement and its Adhesion with Concrete]. Stroitel'stvo: nauka i obrazovanie [Construction: Science and Education]. 2014. no. 1, paper 1. DOI 10.22227/2305-5502.2014.1.1.

DOI: 10.22227/2305-5502.2014.1.1

Google Scholar

[5] Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACE 440.3R.04.

Google Scholar

[6] M.S. Islama, P.Prabhakar Interlaminar strengthening of multidirectional laminates using polymer additive manufacturing. Materials & Design, Vol. 133, (2017), 332-339. DOI 10.1016/j.matdes.2017.07.038.

DOI: 10.1016/j.matdes.2017.07.038

Google Scholar

[7] Z. Chen, G. Fang, J. Xie, J. Liang Experimental study of high-temperature tensile mechanical properties of 3D needled C/C–SiC composites. Materials Science and Engineering, Vol. 654 (2016) 271-277. DOI 10.1016/j.msea.2015.12.010.

DOI: 10.1016/j.msea.2015.12.010

Google Scholar

[8] Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACE 440.2R.08.

Google Scholar

[9] A. L. Naidu, S. Kona, M. V. A. Raju Bahubalendruni Mechanical Behaviour of Layered Silicate Composites from Nagavali River Clay. Materials Today: ProceedingsVol. 18 (2019) 109-113. DOI 10.1016/j.matpr.2019.06.283.

DOI: 10.1016/j.matpr.2019.06.283

Google Scholar

[10] M. G. Lee, J. W. Yoon, S. M. Han Y. S. Suh, K. J. Kang Buckling of WBK Cored Sandwich Panels under Longitudinal Compression. Procedia Materials Science Vol. 4 (2014) 329-334. DOI 10.1016/j.mspro.2014.07.567.

DOI: 10.1016/j.mspro.2014.07.567

Google Scholar

[11] G. Krishnaveni, K. Mounika, A. Navyasree Buckling Analysis of Composite Cylindrical Shell with Cutout Section. Materials Today: ProceedingsVol. 5, Issue 5, (2018 ) 11751-11761. DOI 10.1016/j.matpr.2018.02.144.

DOI: 10.1016/j.matpr.2018.02.144

Google Scholar

[12] D. K. Jesthi, P. Mandal, A. K. R. K. Nayak Rout,Effect of carbon/glass fiber symmetric inter-ply sequence on mechanical properties of polymer matrix composites. Procedia Manufacturing Vol 20 (2018) 530-535. DOI 10.1016/j.promfg.2018.02.079.

DOI: 10.1016/j.promfg.2018.02.079

Google Scholar

[13] G.N. Pervyshin, G.I. Yakovlev, A.F. Gordina, J. Keriene I.S. Polyanskikh, H.-B. Fischer, N.R. Rachimova, A.F. Buryanov Water-resistant gypsum compositions with man-made modifiers. Procedia Engineering Vol. 172 ( 2017 ) 867 – 874. DOI 10.1016/j.proeng.2017.02.087.

DOI: 10.1016/j.proeng.2017.02.087

Google Scholar

[14] Tarnopolsky Yu.M., Kulakov V.L. Metody ispytani kompozitov. Obzor 1964-2000 гг.// Mehanica kompozitnyh materialov Т.37.-№5/6 (2001) 669-693.

Google Scholar

[15] L.U. Stupishin, A.V. Masalov, E.V. Savelyeva. Patent RUS 170083 31.10.(2016).

Google Scholar

[16] Starovoitova I.A., Zykova E.S., Suleymanov A.M., Semenov A.N., Mishurova M.V. Izvestiya Kazanskogo gosudarstvennogo arhitekturno – stroitelnogo universiteta № 3 (37) (2016) 217-224.

Google Scholar

[17] Khozin V.G., Kuklin A.N. Osobennosti ispytani i harakter razrushenia polimerkompozitnoi armatury// Ingenerno – stroitelny gurnal №3 (2014) 40-50.

Google Scholar

[18] Stupishin L.U. Variational Criteria for Critical Levels of Internal Energy of a Deformable Solids Applied Mechanics and Materials Vols. 578-579 (2014) pp.1584-1587. DOI 10.4028/www.scientific.net/amm.578-579.1584.

DOI: 10.4028/www.scientific.net/amm.578-579.1584

Google Scholar