[1]
FAO (2014) The State of World Fisheries and Aquaculture 2014. (Cited 22 Dec 2017) Available from URL: http://www.fao.org/resources/infographics/infographics-details/en/c/231544/.
Google Scholar
[2]
Tokeshi M, Ota N, Kawai T (2000) A comparative study of mor-phometry in shell-bearing molluscs.Journal of Zoology251:31–38.
Google Scholar
[3]
Yao, Z., M. Xia, H. Li, T. Chen, Y. Ye & H. Zheng (2014): Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Critical Reviews in Environmental Science and Technology 44: 2502–2530.
DOI: 10.1080/10643389.2013.829763
Google Scholar
[4]
Hou, Y., A. Shavandi, A. Carne, A.A. Bekhit, T.B. Ng, R.C.F. Cheung & A.E.A. Bekhit (2016): Marine shells: Potential opportunities for extraction of functional and health-promoting materials. Critical Reviews in Environmental Science and Technology 46, 1047–1116.
DOI: 10.1080/10643389.2016.1202669
Google Scholar
[5]
Barros, M.C., P.M. Bello, M. Bao & J.J. Torrado (2009): From waste to commodity: transforming shells into high purity calcium carbonate. Journal of Cleaner Production 17: 400–407.
DOI: 10.1016/j.jclepro.2008.08.013
Google Scholar
[6]
Morris, J.P. (2017): Report synthesising the existing and potential uses of shells as byproducts of the aquaculture industry. WP6: Mollusc shell production as a model for sustainable biominerals. Brussels, Belgium.
Google Scholar
[7]
Ščančar, Janez, Milačič, Radmila, Stražar, Marjeta and Burica, Olga. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge., Sci. Total Environ. Vol. 25 (2000): p.9–19. DOI 10.1016/S0048-9697(99)00478-7.
DOI: 10.1016/s0048-9697(99)00478-7
Google Scholar
[8]
Commission Decision (2014/955/EU). List of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council L 370/44." Official Journal of the European Union. URL:http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/,uri=CELEX:32014D0955&from=EN.
Google Scholar
[9]
Decree nº 209/2004 – Diário da República nº 53/2004, série I-B of 2004-03-03, URL: https://dre.pt/application/file/551687.
Google Scholar
[10]
Stylianou, Marinos, Kollia, Demetra, Haralambous, Katherine-Joanne, Inglezakis, Vassilis, Moustakas Konstantinos and Loizidou, Maria Effect of acid treatment on the removal of heavy metals from sewage sludge., Desalination Vol. 215 No 1-3 (2007): p.73–81. DOI 10.1016/j.desal.2006.11.015.
DOI: 10.1016/j.desal.2006.11.015
Google Scholar
[11]
Fraissler, M., Jöller, H, Mattenberger, T, Brunner and Obernberger, I. Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination.,, Chem. Eng. Process. Vol. 48 No 1 (2009): p.152–164. DOI 10.1016/j.cep.2008.03.009.
DOI: 10.1016/j.cep.2008.03.009
Google Scholar
[12]
Hanay, Ozge, Hasar, Halil and Kocer, Nilufer. Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic.,, J. Hazard. Mater. Vol. 169 No 1-3 (2009): p.703–710. DOI 10.1016/j.jhazmat.2009.04.008.
DOI: 10.1016/j.jhazmat.2009.04.008
Google Scholar
[13]
Zagury, J, Dartiguenave, Y and Setier, J. Ex situ electro-reclamation of heavy metals contaminated sludge: pilot scale study., J. Environ. Eng. Vol. 125 No 10 (1999): p.972–978. DOI 10.1061/(ASCE)0733-9372(1999)125:10(972).
DOI: 10.1061/(asce)0733-9372(1999)125:10(972)
Google Scholar
[14]
Villiers, R, Van Deventer, J and Lorenzen, L. The extraction of species from slurries of insoluble solids with ion-exchange resins., Miner. Eng. Vol. 8 No. 11 (1995): p.1309–1316. DOI 10.1016/0892-6875(95)00098-B.
DOI: 10.1016/0892-6875(95)00098-b
Google Scholar
[15]
Chaudry, Mohammad, Ahmad, Suhail and Malik, Tayyib. Supported liquid membrane technique applicability for removal of chromium from tannery wastes., Waste Manage. Vol. 17 No 4 (1997): p.211–218. DOI 10.1016/S0956-053X(97)10007-1.
DOI: 10.1016/s0956-053x(97)10007-1
Google Scholar
[16]
Pathak, Ashish, Dastidar, Manisha and Sreekrishnan, Trichur. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study., J. Hazard. Mater. Vol. 171 No 1-3 (2009): p.273–278. DOI 10.1016/j.jhazmat.2009.05.139.
DOI: 10.1016/j.jhazmat.2009.05.139
Google Scholar
[17]
Virkutyte, Jurate, Sillanpää, Mika and Latostenmaa, Petri. Electrokinetic soil remediation - critical overview., The Science of the Total Environment Vol. 289 No 1-3 (2002): pp.97-121. DOI 10.1016/S0048-9697(01)01027-0.
DOI: 10.1016/s0048-9697(01)01027-0
Google Scholar
[18]
Al-Hamdan, Ashraf and Reddy, Krishna. Surface speciation modeling of heavy metals in kaolin: implications for electrokinetic soil remediation processes., Adsorption Vol. 11 No. 5 (2005): p.529–546. DOI 10.1007/s10450-005-5611-6.
DOI: 10.1007/s10450-005-5611-6
Google Scholar
[19]
Yeung, Albert, Gu, Ying-Ying. A review on techniques to enhance electrochemical remediation of contaminated soils., J Hazard Mater Vol. 195 (2011): pp.11-29. DOI 10.1016/j.jhazmat.2011.08.047.
DOI: 10.1016/j.jhazmat.2011.08.047
Google Scholar
[20]
Du Y, Lian F, Zhu L Y, 2011. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environmental Pollution, 159(7): 1763–1768.
DOI: 10.1016/j.envpol.2011.04.017
Google Scholar
[21]
Cubillas P, Kohler S, Prieto M, Causserand C, Oelkers E H, ¨ 2005a. How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO3 dissolution-CdCO3 precipitation. Geochimica et Cosmochimica Acta, 69(23): 5459–5476.
DOI: 10.1016/j.gca.2005.07.016
Google Scholar
[22]
Kohler S, Cubillas P, Rodr ¨ ´ıguez-Blanco J D, Bauer C, Prieto M, 2007. Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environmental Science and Technology, 41(1): 112–118.
DOI: 10.1021/es060756j
Google Scholar
[23]
Prieto M, Cubillas P, Fernandez-Gonzalez A, 2003. Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochimica et Cosmochimica Acta, 67(20): 3859–3869.
DOI: 10.1016/s0016-7037(03)00309-0
Google Scholar
[24]
Ribeiro, André, Mota, André, Soares, Margarida, Castro, Carlos, Araújo, Jorge and Carvalho, Joana. Lead (II) removal from contaminated soils by electrokinetic remediation coupled with modified eggshell waste., Key Engineering Materials Vol. 777 (2018): pp.256-261. DOI 10.4028/www.scientific.net/KEM.777.256.
DOI: 10.4028/www.scientific.net/kem.777.256
Google Scholar
[25]
Deer W.A., Howie R.A., Zussman J., Minerais e constituintes das rochas,, Fundação Calouste Gulbenkian, 2ª Ed., Lisboa, (1992).
Google Scholar
[26]
Jouenne C.A., Traité de céramiques et matériaux minéraux,, Editions Septima, 4ème Ed., Paris, (1984).
Google Scholar
[27]
Peng, Guiqun, Tian, Guangming, Liu, Junzhi, Bao, Qibei and Zang, Ling. Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology., Desalination Vol. 271 No.1-3 (2011): p.100–104. DOI 10.1016/j.desal. 2010.12.015.
DOI: 10.1016/j.desal.2010.12.015
Google Scholar
[28]
Fu, R, Wen, D, Xia, X, Zhang, W and Gu, Y. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes., Chemical Engineering Journal Vol. 316 (2017): p.601–608. DOI 10.1016/j.cej.2017.01.092.
DOI: 10.1016/j.cej.2017.01.092
Google Scholar
[29]
Kirkelund, Gunvor, Ottosen, Lisbeth and Villumsen, Arne. Investigation of Cu, Pb, and Zn partitioning be sequential extraction in harbor sediments after electrodialytic remediation., Chemosphere Vol. 79 No. 10 (2010): p.997–1002. DOI 10.1016/j.chemosphere.2010.03.015.
DOI: 10.1016/j.chemosphere.2010.03.015
Google Scholar
[30]
Zhua, Neng-Min, Chenc, Mengjun, Guo, Xu-Jing, Guo-Quan and Yu-Denga, Hua. Electrokinetic removal of Cu and Zn in anaerobic digestate: Interrelation between metal speciation and electrokinetic treatments., Journal of Hazardous Materials Vol. 286 (2015): p.118–126. DOI 10.1016/j.jhazmat.2014.12.023.
DOI: 10.1016/j.jhazmat.2014.12.023
Google Scholar