Low Surface Roughness GaAs/Si Thin-Film Deposition Using Three-Step Growth Method in MBE

Article Preview

Abstract:

Epitaxial GaAs-on-Si is an ideal material system for studying the physics of mismatched heteroepitaxy of a polar semiconductor layer grown on a non-polar substrate like silicon. Understanding and optimization of the initial nucleation of GaAs on silicon is the most crucial step in the success of GaAs/Si heteroepitaxy. Molecular beam epitaxy (MBE) technique has been used to deposit hetero-epitaxial GaAs thin-film on off-angle Si (100) substrate using the three-step growth method. After optimizing the growth parameters of low temperature (LT) buffer layer and high temperature (HT) epilayer, XRD analyses were performed. Characterization results of the GaAs (004) films which were not subjected to annealing, show a full-width half maximum (FWHM) of 760.1 arc sec and a root mean square (RMS) surface roughness of lower than 1 nm for a scanning area of 10 μm × 10 μm.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1014)

Pages:

43-51

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.K. Linder, J. Phillips, O. Qasaimeh, P. Bhattacharya, J.C. Jiang, In (Ga)As/GaAs self-organized quantum dot light emitters grown on silicon substrates, J. Cryst. Growth 201/202 (1999) 1186-1189.

DOI: 10.1016/s0022-0248(99)00024-x

Google Scholar

[2] R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy, J. Appl. Phys. 58 (1985) 374–381.

DOI: 10.1063/1.335687

Google Scholar

[3] T. Y. Gorbach, R. Y. Holiney, L. A. Matveeva, P. S. Smertenko, S. V. Svechnikov, E. F. Venger, R. Ciach, M. Faryna, Growth of III-V semiconductor layers on Si patterned substrates, Thin. Solid Films. 336 (1998) 63-68.

DOI: 10.1016/s0040-6090(98)01213-9

Google Scholar

[4] W. I. Wang, Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100), Appl. Phys. Lett. 44 (1984) 1149.

DOI: 10.1063/1.94673

Google Scholar

[5] S. Nozaki, N. Noto, T. Wgawa, A.T. Wu, T. Soga, T. Jimbo, M. Umeno, Effects of Growth Temperature and V/III Ratio on MOCVD-Grown GaAs-on-Si, Jpn. J. Appl. Phys. 29 (1989) 138.

DOI: 10.1143/jjap.29.138

Google Scholar

[6] H. Okamoto, Y. Watanabe, Y. Kadota, Y. Ohmachi, Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices, Jpn. J. Appl. Phys. 26 (1987) 1950-1952.

DOI: 10.1143/jjap.26.l1950

Google Scholar

[7] H. Romuald, M. Hadis, Properties of GaAs on Si grown by molecular beam epitaxy, Crit. Rev. Solid State 16 (1990) 91-114.

Google Scholar

[8] N. Gopalakrishnan, K. Baskar, H. Kawanami, I. Sakata, Effects of the low temperature grown buffer layer thickness on the growth of GaAs on Si by MBE, J. Cryst. Growth 250 (2003)29-33.

DOI: 10.1016/s0022-0248(02)02210-8

Google Scholar

[9] M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, K. Kaminishi, Growth of high quality GaAs layers on Si substrate by MOCVD, J. Cryst. Growth 77 (1986) 490-497.

DOI: 10.1016/0022-0248(86)90342-8

Google Scholar