Epitaxial Growth of “Strain-Free” Indium Oxide Films on (111) Yttria-Stabilized Zirconia by Metal-Organic Chemical Vapor Deposition

Article Preview

Abstract:

In this work, In2O3 thin films were grown on (111) yttria-stabilized zirconia (YSZ) by metal-organic chemical vapor deposition (MOCVD) at different temperature. It is found that samples grown at low temperature showed lower residual stress but higher mosaicity while high growth temperatures could also cause deterioration in crystal quality due to increasing lattice mismatch. To obtain high quality In2O3 film with low residual strain, a 30-nm thick layer grown at 530 °C was introduced as buffer layer, considering both stress relaxation and crystalline mosaicity. By using two-step growth method, a 400 nm-thick, high quality, near-strain-free In2O3 thin film with the full width at half maximum (FWHM) values of (222) diffraction peaks being as narrow as 648 arcsec was successfully obtained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1014)

Pages:

22-26

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. von Wenckstern, Group-III Sesquioxides: Growth, Physical Properties and Devices, Adv Electron Mater, 3 (2017).

DOI: 10.1002/aelm.201600350

Google Scholar

[2] O. Bierwagen, Indium oxide-a transparent, wide-band gap semiconductor for (opto)electronic applications, Semicond Sci Tech, 30 (2015).

DOI: 10.1088/0268-1242/30/2/024001

Google Scholar

[3] J. Bai, M. Athanasiou, T. Wang, Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells, Sol Energ Mat Sol C, 145 (2016) 226-230.

DOI: 10.1016/j.solmat.2015.10.026

Google Scholar

[4] Z. Chen, Y. Zhuo, W. Tu, X. Ma, Y. Pei, C. Wang, G. Wang, Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes, Appl Phys Lett, 110 (2017) 242101.

DOI: 10.1063/1.4986452

Google Scholar

[5] W. Zheng, F. Huang, R. Zheng, H. Wu, Low-Dimensional Structure Vacuum-Ultraviolet-Sensitive (lambda < 200 nm) Photodetector with Fast-Response Speed Based on High-Quality AlN Micro/Nanowire, Adv Mater, 27 (2015) 3921-3927.

DOI: 10.1002/adma.201500268

Google Scholar

[6] V.S. Vaishnav, S.G. Patel, J.N. Panchal, Development of ITO thin film sensor for detection of benzene, Sensor Actuat B-Chem, 206 (2015) 381-388.

DOI: 10.1016/j.snb.2014.07.037

Google Scholar

[7] W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, F. Huang, Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides, Acs Appl Mater Inter, (2018) 20696-20702.

DOI: 10.1021/acsami.8b04866

Google Scholar

[8] T. Koida, M. Kondo, High electron mobility of indium oxide grown on yttria-stabilized zirconia, J Appl Phys, 99 (2006) 6.

DOI: 10.1063/1.2203722

Google Scholar

[9] K.H.L. Zhang, D.J. Payne, R.G. Palgrave, V.K. Lazarov, W. Chen, A.T.S. Wee, C.F. McConville, P.D.C. King, T.D. Veal, G. Panaccione, P. Lacovig, R.G. Egdell, Surface Structure and Electronic Properties of In2O3(111) Single-Crystal Thin Films Grown on Y-Stabilized ZrO2(111), Chem Mater, 21 (2009) 4353-4355.

DOI: 10.1021/cm901127r

Google Scholar

[10] Z. Chen, Y. Zhuo, R. Hu, W. Tu, Y. Pei, B. Fan, C. Wang, G. Wang, Control of morphology and orientation for textured nanocrystalline indium oxide thin film: A growth zone diagram, Mater Design, 131 (2017) 410-418.

DOI: 10.1016/j.matdes.2017.06.043

Google Scholar

[11] P. Ágoston, K. Albe, Ab initio modeling of diffusion in indium oxide, Phys Rev B, 81 (2010) 195205.

DOI: 10.1103/physrevb.81.195205

Google Scholar

[12] A. Regoutz, K.H.L. Zhang, R.G. Egdell, D. Wermeille, R.A. Cowley, A study of (111) oriented epitaxial thin films of In2O3 on cubic Y-doped ZrO2 by synchrotron-based x-ray diffraction, J Mater Res, 27 (2012) 2257-2264.

DOI: 10.1557/jmr.2012.162

Google Scholar

[13] O. Bierwagen, M.E. White, M.Y. Tsai, J.S. Speck, Plasma-assisted molecular beam epitaxy of high quality In2O3(001) thin films on Y-stabilized ZrO2(001) using In as an auto surfactant, Appl Phys Lett, 95 (2009) 3.

DOI: 10.1063/1.3276910

Google Scholar

[14] Z. Galazka, R. Uecker, K. Irmscher, D. Schulz, D. Klimm, M. Albrecht, M. Pietsch, S. Ganschow, A. Kwasniewski, R. Fornari, Melt growth, characterization and properties of bulk In2O3 single crystals, J Cryst Growth, 362 (2013) 349-352.

DOI: 10.1016/j.jcrysgro.2011.10.029

Google Scholar

[15] C.V. Thompson, Structure evolution during processing of polycrystalline films, Annu. Rev. Mater. Sci., 30 (2000) 159-190.

DOI: 10.1146/annurev.matsci.30.1.159

Google Scholar

[16] K.H.L. Zhang, A. Walsh, C.R.A. Catlow, V.K. Lazarov, R.G. Egdell, Surface Energies Control the Self-Organization of Oriented In2O3 Nanostructures on Cubic Zirconia, Nano Lett, 10 (2010) 3740-3746.

DOI: 10.1021/nl102403t

Google Scholar

[17] H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, 176 (2005) 613-619.

DOI: 10.1016/j.ssi.2004.08.021

Google Scholar

[18] K.H.L. Zhang, V.K. Lazarov, T.D. Veal, F.E. Oropeza, C.F. McConville, R.G. Egdell, A. Walsh, Thickness dependence of the strain, band gap and transport properties of epitaxial In2O3 thin films grown on Y-stabilised ZrO2(111), J Phys-Condens Mat, 23 (2011).

DOI: 10.1088/0953-8984/23/33/334211

Google Scholar

[19] C.S. Zhao, Z. Li, W. Mi, C.N. Luan, X.J. Feng, J. Ma, Structure and Optical Properties of Epitaxial Indium Oxide Films Deposited on Y-Stabilized ZrO2 (111) by MOCVD, J Electron Mater, 44 (2015) 2719-2724.

DOI: 10.1007/s11664-015-3755-z

Google Scholar

[20] X.-Q. Shen, T. Takahashi, T. Ide, M. Shimizu, High-quality GaN film and AlGaN/GaN HEMT grown on 4-inch Si(110) substrates by MOCVD using an ultra-thin AlN/GaN superlattice interlayer, physica status solidi (b), 252 (2014).

DOI: 10.1002/pssb.201451478

Google Scholar