[1]
M. Higashiwaki, H. Murakami, Y. Kumagai, and A. Kuramata, Current status of Ga2O3power devices,, Japanese Journal of Applied Physics, vol. 55, no. 12, p. 1202A1, 2016/11/15 (2016).
DOI: 10.7567/jjap.55.1202a1
Google Scholar
[2]
M. Higashiwaki et al., Recent progress in Ga2O3power devices,, Semiconductor Science and Technology, vol. 31, no. 3, p.034001, 2016/01/18 (2016).
Google Scholar
[3]
Robertson and J. J. E. P. J. A. Physics, High dielectric constant oxides,, vol. 28, no. 3, pp.265-291, (2004).
Google Scholar
[4]
M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, and R. J. J. A. P. L. Fischer, Dielectric properties of electron‐beam deposited Ga2O3 films,, vol. 64, no. 20, pp.2715-2717, (1994).
DOI: 10.1063/1.111452
Google Scholar
[5]
Y. Liu et al., Ga2O3 Field-Effect-Transistor-Based Solar-Blind Photodetector With Fast Response and High Photo-to-Dark Current Ratio,, IEEE Electron Device Letters, vol. 39, no. 11, pp.1696-1699, (2018).
DOI: 10.1109/led.2018.2872017
Google Scholar
[6]
S. Oh, Y. Jung, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, Development of solar-blind photodetectors based on Si-implanted β-Ga2O3,, Optics Express, vol. 23, no. 22, pp.28300-28305, 2015/11/02 (2015).
DOI: 10.1364/oe.23.028300
Google Scholar
[7]
D. Guo et al., Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,, Optical Materials Express, vol. 4, no. 5, pp.1067-1076, 2014/05/01 (2014).
DOI: 10.1364/ome.4.001067
Google Scholar
[8]
W. Mu et al., One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors,, CrystEngComm, 10.1039/C7CE01076A vol. 19, no. 34, pp.5122-5127, (2017).
DOI: 10.1039/c7ce01076a
Google Scholar
[9]
L. Liang et al., Solution-processed Ga–Cd–O thin-films with tunable bandgaps and their transistors,, Journal of Physics D: Applied Physics, vol. 51, no. 33, p.335101, 2018/07/24 (2018).
DOI: 10.1088/1361-6463/aad26b
Google Scholar
[10]
R. Roy, V. G. Hill, and E. F. Osbom, <Polymorphism of Ga2O3 and the System Ga2O3-H2O.pdf>,, Journal of the American Chemical Society, vol. 74 pp.719-722, (1952).
Google Scholar
[11]
T. Onuma et al., Polarized Raman spectra in β-Ga_2O_3 single crystals,, vol. 401, no. sep.1, pp.330-333, (2014).
Google Scholar
[12]
M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. J. A. P. L. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,, vol. 100, no. 1, p.013504, (2012).
DOI: 10.1063/1.3674287
Google Scholar
[13]
S. Jeon et al., Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,, Nature materials, vol. 11, no. 4, pp.301-305, (2012).
DOI: 10.1038/nmat3256
Google Scholar
[14]
L. Y. Liang et al., The structural, optical and electrical properties of Y-doped SnO thin films and their p-type TFT application,, Journal of Physics D: Applied Physics, vol. 45, no. 8, p.085101, (2012).
DOI: 10.1088/0022-3727/45/8/085101
Google Scholar
[15]
B. Zhang, Y. Liu, S. Agarwala, M. Yeh, H. E. J. A. A. M. Katz, and Interfaces, Correction to Structure, Sodium Ion Role, and Practical Issues for β-alumina as a High-k Solution-Processed Gate Layer for Transparent and Low-Voltage Electronics,, vol. 6, no. 9, pp.6991-6991, (2014).
DOI: 10.1021/am502139y
Google Scholar
[16]
A. Kaya et al., An Investigation of Electrical and Dielectric Parameters of Sol–Gel Process Enabled $\beta $ -Ga2O3 as a Gate Dielectric Material,, IEEE Transactions on Electron Devices, vol. 64, no. 5, pp.2047-2053, (2017).
DOI: 10.1109/ted.2017.2675990
Google Scholar
[17]
P. Kumar, A. K. Sharma, B. P. Singh, T. P. Sinha, and N. K. J. P. B. P. o. C. M. Singh, Dielectric Relaxation in Complex Perovskite Oxide Sr(GdNb)O,, vol. 403, no. 1, pp.103-108, (2010).
Google Scholar
[18]
P. et al., Colossal dielectric constants in transition-metal oxides,, (2010).
Google Scholar