[1]
Asif Khan, Krishnan Balakrishnan, and Tom Katona. Ultraviolet light-emitting diodes based on group three nitrides. Nature Photonics, 2(2):77-84, (2008).
DOI: 10.1038/nphoton.2007.293
Google Scholar
[2]
H. Kim, K. K. Choi, K. K. Kim, J. Cho, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong. Lightextraction enhancement of vertical-injection gan-based light-emitting diodes fabricated with highly integrated surface textures. Optics Letters, 33(11):1273-5, (2008).
DOI: 10.1364/ol.33.001273
Google Scholar
[3]
Hideki Hirayama, Noritoshi Maeda, Sachie Fujikawa, Shiro Toyoda, and Norihiko Kamata. Recent progress and future prospects of algan-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn.j.appl.phys, 53(10):100209, (2014).
DOI: 10.7567/jjap.53.100209
Google Scholar
[4]
Yoshitaka Taniyasu, Makoto Kasu, and Toshiki Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210?nanometres. Nature, 441(7091):325-328, (2006).
DOI: 10.1038/nature04760
Google Scholar
[5]
Mrs Bulletin. Advances in bulk crystal growth of aln and gan. Mrs Bulletin, 34, (2009).
DOI: 10.1557/mrs2009.76
Google Scholar
[6]
282-nm algan-based deep ultraviolet light-emitting diodes with improved performance on nanopatterned saoohire substrates. Applied Physics Letters, 102(24):241113.1-241113.4, 2013.[7] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten. Iii-nitrides: Growth, characterization, and properties. Journal of Applied Physics, 87(3):965-1006, (2000).
DOI: 10.1063/1.371971
Google Scholar
[8]
N. Teraguchi, A. Suzuki, Y. Saito, T. Yamaguchi, and Y. Nanishi. Growth of aln films on sic substrates by rf-mbe and rf-mee. Journal of Crystal Growth, 230(3):392-397, (2001).
DOI: 10.1016/s0022-0248(01)01253-2
Google Scholar
[9]
Lisheng Zhang, Fujun Xu, Jiaming Wang, Chenguang He, Weiwei Guo, Mingxing Wang, Bowen Sheng, Lin Lu, Zhixin Qin, and Xinqiang Wang. High-quality aln epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Scientific Reports, 6:35934, (2016).
DOI: 10.1038/srep35934
Google Scholar
[10]
R. Jain, W. Sun, J. Yang, M. Shatalov, X. Hu, A. Sattu, A. Lunev, J. Deng, I. Shturm, and Y. Bilenko. Migration enhanced lateral epitaxial overgrowth of ain and aigan for high reliability deep ultraviolet light emitting diodes. Applied Physics Letters, 93(5):37-39, (2008).
DOI: 10.1063/1.2969402
Google Scholar
[11]
Kazuhito Ban, Jun Ichi Yamamoto, Kenichiro Takeda, Kimiyasu Ide, and Hiroshi Amano. Internal quantum efficiency of whole-composition-range algan multiquantum wells. Applied Physics Express, 4(5):2101, (2011).
DOI: 10.1143/apex.4.052101
Google Scholar
[12]
Myunghee Kim, Jitsuo Ohta, Atsushi Kobayashi, Hiroshi Fujioka, and Masaharu Oshima. Epitaxial growth mechanisms of aln on sic substrates at room temperature. Applied Physics Letters, 91(15):p.151903.1-151903.3, (2007).
DOI: 10.1063/1.2795804
Google Scholar
[13]
Hideto Miyake, Chia Hung Lin, Kenta Tokoro, and Kazumasa Hiramatsu. Preparation of highquality aln on sapphire by high-temperature face-to-face annealing. Journal of Crystal Growth, 456:155-159, (2016).
DOI: 10.1016/j.jcrysgro.2016.08.028
Google Scholar
[14]
M. X. Wang, F. J. Xu, N. Xie, Y. H. Sun, B. Y. Liu, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, and X. Q. and Wang. High-temperature annealing induced evolution of strain in aln epitaxial films grown on sapphire substrates. Applied Physics Letters, 114(11), (2019).
DOI: 10.1063/1.5087547
Google Scholar
[15]
Hideto Miyake, Chia Hung Lin, Kenta Tokoro, and Kazumasa Hiramatsu. Preparation of highquality aln on sapphire by high-temperature face-to-face annealing. Journal of Crystal Growth, 456:155-159, (2016).
DOI: 10.1016/j.jcrysgro.2016.08.028
Google Scholar
[16]
Xiao Shiyu, Suzuki Ryoya, Miyake Hideto, Harada Shunta, and Ujihara Toru. Improvement mechanism of sputtered aln films by high-temperature annealing. Journal of Crystal Growth, pages S0022024818304214-, (2018).
DOI: 10.1016/j.jcrysgro.2018.09.002
Google Scholar
[17]
Kenjiro Uesugi, Kanako Shojiki, Yuta Tezen, Yusuke Hayashi, and Hideto Miyake. Suppression of dislocation-induced spiral hillocks in movpe-grown algan on face-to-face annealed sputterdeposited aln template. Applied Physics Letters, 116(6):062101, (2020).
DOI: 10.1063/1.5141825
Google Scholar
[18]
Duc V Dinh, Hiroshi Amano, and Markus Pristovsek. Movpe growth and high-temperature annealing of (101¯0) aln layers on (101¯0) sapphire. Journal of Crystal Growth, 502:14-18, (2018).
DOI: 10.1016/j.jcrysgro.2018.09.001
Google Scholar
[19]
Junya Hakamata, Yuta Kawase, Lin Dong, Sho Iwayama, Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama, Hideto Miyake, and Isamu Akasaki. Growth of high quality aln and algan films on sputtered aln/sapphire templates via high temperature annealing. Physica Status Solidi B-basic Solid State Physics, 255(5):1700506, (2018).
DOI: 10.1002/pssb.201700506
Google Scholar
[20]
S R Lee, A West, A A Allerman, K E Waldrip, D M Follstaedt, P P Provencio, D D Koleske, and C R Abernathy. Effect of threading dislocations on the bragg peakwidths of gan, algan, and aln heterolayers. Applied Physics Letters, 86(24):241904, 2005.[21] R Cebulla, R Wendt, and K Ellmer. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. Journal of Applied Physics, 83(2):1087-1095, (1998).
DOI: 10.1063/1.1947367
Google Scholar
[22]
A F Wright. Elastic properties of zinc-blende and wurtzite aln, gan, and inn. Journal of Applied Physics, 82(6):2833-2839, (1997).
DOI: 10.1063/1.366114
Google Scholar
[23]
Shiro Kobayashi and Klaus Müllen. Encyclopedia of polymeric nanomaterials ||. 10.1007/978- 3-642-29648-2, (2015).
Google Scholar
[24]
Kenjiro Uesugi, Kanako Shojiki, Yuta Tezen, Yusuke Hayashi, and Hideto Miyake. Suppression of dislocation-induced spiral hillocks in movpe-grown algan on face-to-face annealed sputterdeposited aln template. Applied Physics Letters, 116(6):062101, (2020).
DOI: 10.1063/1.5141825
Google Scholar