Normally-Off GaN Power Device Based on Stack AlGaN Barrier Structure and P-Type NiO Gate Electrode

Article Preview

Abstract:

In this study, we propose a novel normally-off AlGaN/GaN HFET based on stack AlGaN barrier structure and p-type NiO gate. The residual thin AlGaN barrier (with low Al content) is adopted to alleviate mobility degradation. Besides, p-type conductive NiO formed by thermal oxidation at 500 °C was used as gate electrode, which contribute to the positive shift of threshold voltage. Combining NiO gate and thin barrier structure, normally-off device with a threshold voltage of +1.1 V is realized. Temperature dependent transfer characteristics show that the normally-off device presents good thermally stability within the temperature range from 25 to 150 °C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1014)

Pages:

86-92

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. J. Chen, O. Häberlen, A. Lindow, C. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, GaN-on-Si Power Technology: Devices and Applications, IEEE Trans. Electron Devices, 64 (2017) 779.

DOI: 10.1109/ted.2017.2657579

Google Scholar

[2] D. Marcon, Y. N. Saripalli, and S. Decoutere, 200mm GaN-on-Si epitaxy and e-mode device technology, IEDM Dig. Tech. Papers, 16.2 (2015) 1-4.

DOI: 10.1109/iedm.2015.7409709

Google Scholar

[3] T. Ueda, M. Ishida, T. Tanaka, and D. Ueda, GaN transistors on Si for switching and high-frequency applications, Jpn. J. Appl. Phys., 53 (2014) 100214.

DOI: 10.7567/jjap.53.100214

Google Scholar

[4] Q. Wang, K. Tamai, T. Miyashita, S. Motoyama, D. Wang, J.-P. Ao, and Y. Ohno, Influence of dry recess process on enhancement-mode GaN metal–oxide–semiconductor field-effect transistors, Jpn. J. Appl. Phys., 52 (2013) 01AG02.

DOI: 10.7567/jjap.52.01ag02

Google Scholar

[5] S. H. Liu, S. Yang, Z. K. Tang, Q. M. Jiang, C. Liu, M. J. Wang, and K. J. Chen, Al2O3/AlN/GaN MOS-Channel-HEMTs with an AlN interfacial layer, IEEE Electron Devices Lett., 35 (2014) 723.

DOI: 10.1109/led.2014.2322379

Google Scholar

[6] A. N. Tallarico, S. Stoffels, N. Posthuma, P. Magnone, D. Marcon, S. Decoutere, E. Sangiorgi, and C. Fiegna, PBTI in GaN-HEMTs With p-Type Gate: Role of the Aluminum Content on and Underlying Degradation Mechanisms, IEEE Trans. Electron Devices, 65 (2018) 38.

DOI: 10.1109/ted.2017.2769167

Google Scholar

[7] G. Greco, F. Iucolano, and F. Roccaforte, Review of technology for normally-off HEMTs with p-GaN gate, Mater. Sci. Semicond. Proc., 78 (2018) 96.

DOI: 10.1016/j.mssp.2017.09.027

Google Scholar

[8] Y. Yao, Z. He, Fan. Yang, Z. Shen, J. Zhang, Y. Ni, J. Li, S. Wang, G. Zhou, J. Zhong, Z. Wu, B. Zhang, J. Ao, and Y. Liu, Normally-off GaN recessed-gate MOSFET fabricated by selective area growth technique, Appl. Phys. Express, 7 (2014) 016502.

DOI: 10.7567/apex.7.016502

Google Scholar

[9] L. He, F. Yang, L. Li, Z. Chen, Z. Shen, Y. Zheng, Y. Yao, Y. Ni, D. Zhou, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, High threshold voltage uniformity and low hysteresis recessed-gate Al2O3/AlN/GaN MISFET by selective area Growth, IEEE Trans. Electron Devices, 64 (2017) 1554.

DOI: 10.1109/ted.2017.2672438

Google Scholar

[10] S. Huang, X. Liu, X. Wang, X. Kang, J. Zhang, J. Fan, J. Shi, K. Wei, Y. Zheng, H. Gao, Q. Sun, M. Wang, B. Shen, and K. J. Chen, Ultrathin-barrier AlGaN/GaN heterostructure: a recess-free technology for manufacturing high-performance GaN-on-Si power devices, IEEE Trans. Electron Devices, 65 (2018) 207.

DOI: 10.1109/ted.2017.2773201

Google Scholar

[11] S. Liu, M. Wang, M. Tao, R. Yin, J. Gao, H. Sun, W. Lin, C. P. Wen, J. Wang, W. Wu, Y. Hao, Z. Zhang, and K. J. Chen, Gate-recessed normally-off GaN MOSHEMT with improved channel mobility and dynamic performance using AlN/Si3N4 as passivation and post gate-recess channel protection layers, IEEE Electron Devices Lett., 38 (2017) 1075.

DOI: 10.1109/led.2017.2718624

Google Scholar

[12] Y. Wen, Z. He, J. Li, R. Luo, P. Xiang, Q. Deng, G. Xu, Z. Shen,Z. Wu, B. Zhang, H. Jiang, G. Wang, and Y. Liu, Enhancement-mode AlGaN/GaN heterostructure field effect transistors fabricated by selective area growth technique, Appl. Phys. Lett., 98 (2011) 072108.

DOI: 10.1063/1.3553229

Google Scholar

[13] D. Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, and T. Ueda, 1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure, in IEDM Dig. Tech. Papers, (2016) 10.1.1-4.

DOI: 10.1109/iedm.2016.7838385

Google Scholar

[14] R. Hao, K. Fu, G. Yu, W. Li, J. Yuan, L. Song, Z. Zhang, S. Sun, X. Li, Y. Cai, X. Zhang, and B. Zhang, Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment, Appl. Phys. Lett., 109 (2016) 152106.

DOI: 10.1063/1.4964518

Google Scholar

[15] J.-M. Lee, K.-M. Chang, I.-H. Lee, and S.-J. Park, Highly selective dry etching of III nitrides using an inductively coupled Cl2/Ar/O2 plasma, J. Vacuum Sci. Technol. B, 18 (2000) 1409.

DOI: 10.1116/1.591394

Google Scholar

[16] T. Zhang, L. Li, and J.-P. Ao, Temperature-dependent electrical transport characteristics of a NiO/GaN heterojunction diode, Surfaces and Interfaces, 5 (2016) 15.

DOI: 10.1016/j.surfin.2016.08.004

Google Scholar

[17] S. Huang, C. Chou, Y. Su, J. Lin, H. Yu, D. Chen, J. Ruan, Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing, Appl. Surf. Sci., 401 (2017) 373.

DOI: 10.1016/j.apsusc.2017.01.032

Google Scholar

[18] L. Wang, L. Li, T. Xie, X. Wang, X. Liu, and J.-P. Ao, Threshold voltage tuning in AlGaN/GaN HFETs with p-type Cu2O gate synthesized by magnetron reactive sputtering, Appl. Surf. Sci., 437 (2018) 98.

DOI: 10.1016/j.apsusc.2017.12.177

Google Scholar

[19] L. Li, W. Wang, L. He, J. Zhang, Z. Wu, B. Zhang, and Y. Liu, Synthesis and characterization of p-type NiO films suitable for normally-off AlGaN/GaN HFETs application, Mater. Sci. Semicond. Proc., 67 (2017) 141.

DOI: 10.1016/j.mssp.2017.05.027

Google Scholar

[20] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition, J. Appl. Phys., 98 (2005) 013505.

DOI: 10.1063/1.1940137

Google Scholar

[21] L. Li, W. Wang, L. He, X. Zhang, Z. Wu, and Y. Liu, Determination of band offsets between p-NiO gate electrode and unintentionally doped GaN for normally-off GaN power device, J. Alloys Compd., 728 (2017) 400.

DOI: 10.1016/j.jallcom.2017.09.037

Google Scholar

[22] T.-L. Wu, D. Marcon, S. You, N. Posthuma, B. Bakeroot, S. Stoffels, M. Van Hove, G. Groeseneken, and S. Decoutere, Forward bias gate breakdown mechanism in enhancement-mode p-GaN gate AlGaN/GaN high-electron mobility transistors, IEEE Electron Devices Lett., 36 (2015) 1001.

DOI: 10.1109/led.2015.2465137

Google Scholar

[23] M. Hua, J. Wei, Q. Bao, Z. Zhang, Z. Zheng, and K.J. Chen, Dependence of Vth stability on gate-bias under reverse-bias stress in E-mode GaN MISFET, IEEE Electron Devices Lett., 39 (2018) 413.

DOI: 10.1109/led.2018.2791664

Google Scholar

[24] Y. Zheng, F. Yang, L. He, Y. Yao, Z. Shen, G. Zhou, Z. He, Y. Ni, D. Zhou, J. Zhong, X. Zhang, L. He, Z. Wu, B. Zhang, Y. Liu, Selective area growth: a promising way for recessed gate GaN MOSFET with high quality MOS interface, IEEE Electron Device Lett., 37 (2016) 1193.

DOI: 10.1109/led.2016.2590821

Google Scholar

[25] C. Liu, S. Yang, S. Liu, Z. Tang, H. Wang, Q. Jiang, and K. J. Chen, Thermally stable enhancement-mode GaN metal-isolator-semiconductor high-electron-mobility transistor with partially recessed fluorine-implanted barrier, IEEE Electron Devices Lett., 36 (2015) 318.

DOI: 10.1109/led.2015.2403954

Google Scholar