[1]
J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater. 61 (2013), 818-843.
DOI: 10.1016/j.actamat.2012.10.044
Google Scholar
[2]
M. Arul Kumar, I.J. Beyerlein, C.N. Tome, A measure of plastic anisotropy for hexagonal close packed metals: Application to alloying effects on the formability of Mg, J. Alloys Compd. 695 (2017), 1488-1497.
DOI: 10.1016/j.jallcom.2016.10.287
Google Scholar
[3]
C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical Applications of Titanium and its Alloys, JOM March (2008), 46-49.
DOI: 10.1007/s11837-008-0031-1
Google Scholar
[4]
C. Veiga, J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci. 32 (2012), 14-34.
Google Scholar
[5]
M. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Mater. Trans. A 12 (1981), 409-418.
DOI: 10.1007/bf02648537
Google Scholar
[6]
N.H. Macmillan and A. Kelly, On the relationship between ideal tensile strength and surface energy, Mater. Sci. Eng. A 10 (1972), 139-143.
DOI: 10.1016/0025-5416(72)90078-x
Google Scholar
[7]
E. Clouet, D. Caillard, N. Chaari, F. Onimus and D. Rodney, Dislocation locking versus easy glide in titanium and zirconium, Nat. Mater. 14 (2015), 931-936.
DOI: 10.1038/nmat4340
Google Scholar
[8]
H.S. Rosenbaum, Non-basal slip and twinning accommodation in zinc crystals, Acta Metall. 9 (1961), 742-748.
DOI: 10.1016/0001-6160(61)90104-3
Google Scholar
[9]
M.Z. Bian, K.S. Shin, {10-1 2} twinning behavior in magnesium single crystal, Met. Mater. Int. 19 (2013), 999-1004.
DOI: 10.1007/s12540-013-5012-4
Google Scholar
[10]
K.Y. Xie, Z. Alam, A. Caffee and K.J. Hemker, Pyramidal I slip in c-axis compressed Mg single crystals, Scripta Mater. 112 (2016), 75-78.
DOI: 10.1016/j.scriptamat.2015.09.016
Google Scholar
[11]
S.R. Agnew, L. Capolungo and C.A. Calhoun, Connections between the basal I1 growth, fault and c+a dislocations, Acta Mater. 82 (2015), 255-265.
DOI: 10.1016/j.actamat.2014.07.056
Google Scholar
[12]
B. Yin, Z. Wu, W.A. Curtin, Comprehensive first-principles study of stable stacking faults in hcp metals, Acta Mater. 123 (2017), 223-234.
DOI: 10.1016/j.actamat.2016.10.042
Google Scholar
[13]
V. Vitek and V. Paidar, Non-planar dislocation cores: A ubiquitous phenomenon affecting mechanical properties of crystalline materials, in Vol. 14 of Dislocations in Solids, Editor J.P. Hirth, Amsterdam: North-Holland, 2008, 439-514.
DOI: 10.1016/s1572-4859(07)00007-1
Google Scholar
[14]
M.H. Yoo, J.R. Morris, K.M. Ho, S.R. Agnew, Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility, Metall. Mater. Trans. A 33 (2002), 813-822.
DOI: 10.1007/s11661-002-0150-1
Google Scholar
[15]
X.-L. Nan, H.-Y. Wang, L. Zhang, J.-B. Li, Q.-Ch. Jiang, Calculation of Schmid factors in magnesium: Analysis of deformation behaviors, Scripta Mater. 67 (2012), 443-446.
DOI: 10.1016/j.scriptamat.2012.05.042
Google Scholar
[16]
J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995), 1-157.
Google Scholar
[17]
V. Paidar, Displacive processes in systems with bcc parent lattice, Prog. Mater. Sci. 56 (2011), 841-851.
DOI: 10.1016/j.pmatsci.2011.01.009
Google Scholar
[18]
L.P. Kubin, A. Fourdeux, J.Y. Guedou, J. Rieu, Pseudoelasticity and slip reversibility in DO3-ordered Fe-Al single crystals by in situ experiments, Philos. Mag. A. 46 (1982), 357-378.
DOI: 10.1080/01418618208239564
Google Scholar
[19]
K. Otsuka, S. Miyazaki, Development of shape memory alloys, ISIJ Int. 29 (1989), 353-377.
DOI: 10.2355/isijinternational.29.353
Google Scholar