A Novel Method for Evaluation of Chromium Evaporation from Solid Oxide Fuel Cells Interconnects: A Feasibility Study

Article Preview

Abstract:

The evaporation of volatile chromium species from ferritic stainless steels (FSSs) used as interconnect is well-known as degradation source for planar solid oxide fuel cell (SOFC) stacks. This work presents a feasibility study to quantify chromium evaporation from FSSs. It is based on measuring carbon dioxide produced by an intermediate reaction. Cr evaporated is collected by sodium carbonate forming sodium chromate and carbon dioxide. Measuring the resulting carbon dioxide allowed to quantify online the amount of reacted chromium with the carbonates. The post-experiment quantification of sodium chromate confirmed the applicability of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1109-1113

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.B. Stambuli, E. Traversa, Solid oxide fuel cells: a review of an environmental clean and efficient source of energy, Renew. Sustain Energy Rev. 6 (2002) 433-455.

DOI: 10.1016/s1364-0321(02)00014-x

Google Scholar

[2] J. Ryter, R. Amendola, M. McCleary, W.-J. Shong, C.-K. Liu, R. Spotorno, P. Piccardo, Effect of electrical current on the oxidation behavior of electroless nickel-plated ferritic stainless steel in solid oxide fuel cell operating conditions, International Journal of Hydrogen Energy 43 (2018) 426-434.

DOI: 10.1016/j.ijhydene.2017.11.055

Google Scholar

[3] Z. B. Stoynov, D. E. Vladikova, B. G. Burdin, J. Laurencin, D. Montinaro, A. Nakajo, P. Piccardo, A. Thorel, M. Hubert, R. Spotorno, A. Chesnaud, Differential Resistance Analysis - A New Tool for Evaluation of Solid Oxide Fuel Cells Degradation, MRS Advances 2 (2017) 3991-4003.

DOI: 10.1557/adv.2017.592

Google Scholar

[4] P. Piccardo, A. Pecunia, V. Bongiorno, R. Spotorno, Z. Wuillemin, J. P. Ouweltjes, Aging of Materials at Inlet and Outlet Fuel Manifolds in a SOFC Stack, ECS Transactions 68 (2015) 2611-2624.

DOI: 10.1149/06801.2611ecst

Google Scholar

[5] E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Jonson, J.K. Olminsky, Theorical and experimental investigation of the thermochemistry of CrO2(OH)2((g). J Phys Chem A 111 (2007) 1971-1980.

DOI: 10.1002/chin.200723014

Google Scholar

[6] M. Kornely, A. Neumann, N.H Mezler, A. Leonide, A. Weber, E. Ivers-Tiffèe, Degradation of anode supported cell (ASC) performance by Cr-poisoning. J Power Sources; 196 (2011) 7203-7208.

DOI: 10.1016/j.jpowsour.2010.10.033

Google Scholar

[7] Z. Stoynov, D. Vladikova, B. Burdin, J. Laurencin, D. Montinaro, G. Raikova, G. Schiller, P. Szabo, Differential analysis of SOFC current-voltage characteristics, Appl. Energy 228 (2018) 1584-1590.

DOI: 10.1016/j.apenergy.2018.06.138

Google Scholar

[8] R. Spotorno, P. Piccardo, F. Perrozzi, Interaction between Crofer 22 APU Current Collector and LSCF Cathode Contacting Layer under Cell Operation, ECS Transaction 68 (2015) 1633-1640.

DOI: 10.1149/06801.1633ecst

Google Scholar

[9] R. Spotorno, P. Piccardo, F. Perrozzi, S. Valente, M. Viviani, A. Ansar, Microstructural and Electrical Characterization of Plasma Sprayed Cu-Mn Oxide Spinels as Coating on Metallic Interconnects for Stacking Solid Oxide Fuel Cells. Fuel Cells 15(5) (2015) 728-734.

DOI: 10.1002/fuce.201400189

Google Scholar

[10] Thyssenkrupp® Crofer 22 APU datasheet.

Google Scholar

[11] R. Sachitanand, M. Sattari, J.E. Svensson, J. Froitzheim, Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects, Int J of Hydrogen Energy 38 (2013) 15328-15334.

DOI: 10.1016/j.ijhydene.2013.09.044

Google Scholar

[12] H. Falk-Windisch, J.E. Svensson, J. Froitzheim, The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells, J Power Sources 287 (2015) 25-35.

DOI: 10.1016/j.jpowsour.2015.04.040

Google Scholar