Microstructure Development in the Bonding Zone of Explosively Welded Ti and Cu Sheets

Article Preview

Abstract:

The interplay of various hardening and softening processes during explosive welding and post-processing annealing have been analysed in titanium/copper bimetallic sheets using scanning electron microscopy and microhardness measurements. Severe plastic deformation and intermetallics’ formation are typical processes leading to hardening, whereas dynamic/static recrystallization and the transformation of amorphous phases into crystalline ones lead to softening. In the as-welded state the interfacial layers of both parent sheets are severely deformed. However, they can undergo intense recrystalization in areas near large melted zones. Inside the melted zones a wide variety of chemical compositions can be detected, however, most of the phases do not appear in the Ti-Cu equilibrium phase diagram. The post-processing annealing at 973 K for 1 h leads to full recrystallization of severely deformed layers of parent sheets and transforms the non-equilibrium phases forming melted zone into the equilibrium TiCu4 and Ti3Cu4 ones via spinodal decomposition. Simultaneously, the growth of four intermetallic layers: Ti2Cu, TiCu, Ti3Cu4, TiCu4 situated along the whole interface was detected.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1114-1120

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.Z. Blazynski (ed.) Explosive Welding, Forming and Compaction, Applied Science Publishers LTD, New York, (1983).

Google Scholar

[2] H. Paul , W. Skuza, R. Chulist, M. Miszczyk, A. Gałka, M. Prażmowski, J. Pstruś, The effect of detonation velocity and stand-off distance on the interface morphology and electro-mechanical properties of Ti/Cu clad composites produced by explosive welding, Metal. Mater. Trans. A, 51A (2020) 750-766.

DOI: 10.1007/s11661-019-05537-x

Google Scholar

[3] N. Kahraman, B. Gülenç, Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process, J. Mater. Proc. Techn., 169 (2005) 67-71.

DOI: 10.1016/j.jmatprotec.2005.02.264

Google Scholar

[4] J. Song, A. Kostka, M. Veehmayer, D. Raabe, Hierarchical microstructure of explosive joints: Example of titanium to steel cladding, Mater. Sci. Engn. A, 528 (2011) 2641–2647.

DOI: 10.1016/j.msea.2010.11.092

Google Scholar

[5] R. Mendes, B. Ribeiro, A. Loureiro, Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration, Mater. Des. 51 (2013) 182-192.

DOI: 10.1016/j.matdes.2013.03.069

Google Scholar

[6] I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, A.M. Jorge Jr., High cooling rates and metastable phases at the interfaces of explosively welded materials, Acta Mater., 135 (2017) 277-289.

DOI: 10.1016/j.actamat.2017.06.038

Google Scholar

[7] H. Paul, J. Morgiel, M. Faryna, M. Prażmowski, M. Miszczyk, Microstructure and interfacial reactions in the bonding zone of explosively welded Zr700 and carbon steel plates, Int. J. Mat. Res., 106(7) (2015) 782-792.

DOI: 10.3139/146.111230

Google Scholar

[8] H. Paul, M.M. Miszczyk, R. Chulist, M. Prażmowski, J. Morgiel, A. Gałka, M. Faryna, F. Brisset, Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets, Mater. Des., 153 (2018) 177-189.

DOI: 10.1016/j.matdes.2018.05.014

Google Scholar

[9] H. Paul, M. M. Miszczyk, A. Gałka, R. Chulist, Z. Szulc, Microstructural and chemical composition changes in the bonding zone of explosively welded sheets, Archives of Metallurgy and Materials 64(2) (2019) 683-694.

DOI: 10.1016/j.matdes.2018.05.014

Google Scholar

[10] H. Paul, R. Chulist, M. Miszczyk, L. Lityńska-Dobrzyńska, G. Cios, A. Gałka, P. Petrzak, M. Szlezynger, Towards better understanding of the phase transformations in explosively welded copper to titanium sheets, submitted to Mater. Sci. Engn. A (2020).

DOI: 10.1016/j.msea.2020.139285

Google Scholar

[11] D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, Iu.N. Milutina, V.S. Lozhlin, M.A. Esikov, A.M.J. Jorge, Explosively welded multilayer Ti-Al composite: Structure and transformation during heat treatment, Mater. Des. 102 (2016) 122-130.

DOI: 10.1016/j.matdes.2016.04.037

Google Scholar

[12] I.A. Bataev, S. Tanaka, Q. Zhou, D.V. Lazurenko, A.M. Jorge Junior, A.A. Bataev, K. Hokamoto, A. Mori, P. Chen, Towards better understanding of explosive welding by combination of numerical simulation and experimental study, Mater. Des. 169 (2019) 107649.

DOI: 10.1016/j.matdes.2019.107649

Google Scholar