Effect of Interstitial Elements on the Cryogenic Mechanical Behavior of FCC High Entropy Alloys

Article Preview

Abstract:

High entropy alloys (HEAs) with face-centered cubic (fcc) structure, namely equiatomic CoCrFeMnNi alloy, have attracted considerable attention because of impressive cryogenic mechanical properties – strength, ductility, and fracture toughness. Further increase of the properties can be achieved, for example, by proper alloying. A particularly attractive option is the addition of interstitial elements like carbon or nitrogen. In present work, a series of CoCrFeMnNi-based alloys with different amounts of C and N (0-2 at.%) was prepared by induction melting. The alloys doped with C had lower Cr content to increase the solubility of carbon in the fcc solid solution. It was revealed that the solid solution strengthening effect of both C and N is significantly increased when the testing temperature decreases from 293K to 77K. The effect of thermomechanical processing on the structure and mechanical properties of the alloys is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1386-1391

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[2] S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Mater. 135 (2017) 177–187.

DOI: 10.1016/j.actamat.2017.06.027

Google Scholar

[3] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science (80-.). 345 (2014) 1153–1158.

DOI: 10.1126/science.1254581

Google Scholar

[4] Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun. 6 (2015) 10143.

DOI: 10.1038/ncomms10143

Google Scholar

[5] B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures., Nat. Commun. (2016).

DOI: 10.1038/ncomms10602

Google Scholar

[6] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[7] N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys, J. Alloys Compd. 687 (2016) 59–71.

DOI: 10.1016/j.jallcom.2016.06.103

Google Scholar

[8] M. V. Klimova, D.G. Shaysultanov, R.S. Chernichenko, V.N. Sanin, N.D. Stepanov, S. V. Zherebtsov, A.N. Belyakov, Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy, Mater. Sci. Eng. A. 740–741 (2019) 201–210.

DOI: 10.1016/j.msea.2018.09.113

Google Scholar

[9] N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, N.Y. Yurchenko, S. V Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloys Compd. 693 (2017) 394–405.

DOI: 10.1016/j.jallcom.2016.09.208

Google Scholar

[10] Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep. 7 (2017) 40704.

DOI: 10.1038/srep40704

Google Scholar

[11] I. Moravcik, H. Hadraba, L. Li, I. Dlouhy, D. Raabe, Z. Li, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scr. Mater. 178 (2020) 391–397.

DOI: 10.1016/j.scriptamat.2019.12.007

Google Scholar

[12] J. Li, B. Gao, Y. Wang, X. Chen, Y. Xin, S. Tang, B. Liu, Y. Liu, M. Song, Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys, J. Alloys Compd. 792 (2019) 170–179.

DOI: 10.1016/j.jallcom.2019.03.403

Google Scholar

[13] J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, X. Fan, Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy, Mater. Chem. Phys. 210 (2018) 136–145.

DOI: 10.1016/j.matchemphys.2017.08.011

Google Scholar

[14] D.E. Jodi, J. Park, B. Straumal, N. Park, Investigation on the precipitate formation and behavior in nitrogen-containing equiatomic CoCrFeMnNi high-entropy alloy, Mater. Lett. 258 (2020) 126806.

DOI: 10.1016/j.matlet.2019.126806

Google Scholar

[15] I. Moravcik, J. Cizek, L. Gouvea, J. Cupera, I. Guban, I. Dlouhy, Nitrogen Interstitial Alloying of CoCrFeMnNi High Entropy Alloy through Reactive Powder Milling, Entropy. 21 (2019) 363.

DOI: 10.3390/e21040363

Google Scholar

[16] V.G. Gavriliuk, H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer Berlin Heidelberg, Berlin, (1999).

Google Scholar

[17] M.V. Klimova, A.O. Semenyuk, D.G. Shaysultanov, G.A. Salishchev, S.V. Zherebtsov, N.D. Stepanov, Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys, J. Alloys Compd. 811 (2019) 152000.

DOI: 10.1016/j.jallcom.2019.152000

Google Scholar

[18] Z. Wang, W. Lu, D. Raabe, Z. Li, On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions, J. Alloys Compd. 781 (2019) 734–743.

DOI: 10.1016/j.jallcom.2018.12.061

Google Scholar