Microstructure Refinement Effect on EUROFER 97 Steel for Nuclear Fusion Application

Article Preview

Abstract:

In Europe EUROFER 97 has been recognised as reference steel for the nuclear costructions under high radiation density for first wall of a fast breeder reactors as well as in other high stressed primary structures such as the divertors, blanklet and vessels. Following to this a EUROFER 97 detailed knowledge of the microstructure evolution after thermo-mechanical processing is required, because the material mechanical properties are interesting also for innovative solar plants, i.e. NEXTOWER project. A detailed knowledge of process optimisation is mandatory because EUROFER 97 steel mechanical properties and microstruture are heavily influenced and improved (and easily affeted) by thermomechanical treatments. In this paper the effect of thermo-mechanical parameters on the grain refinement of EUROFER 97 has been investigated by cold rolling and heat treatment on pilot scale.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1392-1397

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Williams, E.A. Marquis, A. Cerezo, G D.W. Smith, Nanoscale characterisation of ODS–Eurofer 97 steel: An atom-probe tomography study, Journal of Nuclear Materials 400 (2010) 37–45.

DOI: 10.1016/j.jnucmat.2010.02.007

Google Scholar

[2] A. Di Schino, C. Testani, L. Pilloni, Effect of thermo-mechanical parameters on the mechanical properties of Eurofer97 steel for nuclear applications, Open Engineering 8 (2018) 349-353.

DOI: 10.1515/eng-2018-0040

Google Scholar

[3] K.D. Zilnyk, V.B. Oliveira, H.R.Z. Sandim, A. Möslang, D. Raabe, Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study, Journal of Nuclear Materials 462 (2015) 360–367.

DOI: 10.1016/j.jnucmat.2014.12.112

Google Scholar

[4] Xiang Chen, Arunodaya Bhattacharya, Mikhail A. Sokolov, Logan N. Clowers, Yukinori Yamamoto, Tim Graening, Kory D. Linton, Yutai Katoh, Michael Rieth, Mechanical properties and microstructure characterization of Eurofer97 steel variants in EUROfusion program, Fusion Engineering and Design 146 (2019) 2227–2232.

DOI: 10.1016/j.fusengdes.2019.03.158

Google Scholar

[5] R. Montanari, G. Filacchioni, B. Iacovone, P. Plini, B. Riccardi, High temperature indentation tests on fusion reactor candidate materials, Journal of Nuclear Materials 367–370 (2007) 648–652.

DOI: 10.1016/j.jnucmat.2007.03.099

Google Scholar

[6] A. Kohyama, A. Hishinuma b, D.S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich; Low-activation ferritic and martensitic steels for fusion application, Journal of Nuclear Materials 233-237 (1996) 138-147.

DOI: 10.1016/s0022-3115(96)00327-3

Google Scholar

[7] K. Mergia, N. Boukos, Structural, thermal, electrical and magnetic properties of Eurofer 97 steel, Journal of Nuclear Materials 373 (2008) 1–8.

DOI: 10.1016/j.jnucmat.2007.03.267

Google Scholar

[8] G.S. Was, D. Petti, S. Ukai, S. Zinkle, Materials for future nuclear energy systems, Journal of Nuclear Materials 527 (2019) 151837.

DOI: 10.1016/j.jnucmat.2019.151837

Google Scholar

[9] Michael Gorley, Eberhard Diegele, Sergei Dudarev, Gerald Pintsuk, Materials engineering and design for fusion—Towards DEMO design criteria, Fusion Engineering and Design 136 (2018) 298–303.

DOI: 10.1016/j.fusengdes.2018.02.012

Google Scholar

[10] E. V. Gladkikh, K. S. Kravchuk, A. S. Useinov, A. A. Nikitin, and S. V. Rogozhkin, A Study of the Effect of Ion Irradiation on the Mechanical Properties of Eurofer 97 Steel, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 13 (2019) 48–52.

DOI: 10.1134/s1027451019010075

Google Scholar

[11] G. Filacchioni, R. Montanari, M.E. Tata, L. Pilloni, Structural and mechanical properties of welded joints of reduced activation martensitic steels, Journal of Nuclear Materials 307–311 (2002) 1563–1567.

DOI: 10.1016/s0022-3115(02)01073-5

Google Scholar

[12] Steven J. Zinkle and Jeremy T. Busby, Structural materials for fission & fusion energy, Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box (2008) 37831-6132.

Google Scholar

[13] H. Schroeder, H, Ullmaier, Helium and hydrogen effects on the embrittlement of iron- and nickel-based, Journal of Nuclear Materials 1799181 (1991) 118-124.

DOI: 10.1016/0022-3115(91)90025-3

Google Scholar

[14] V.B. Oliveira, H.R.Z. Sandim, D. Raabe, Abnormal grain growth in Eurofer-97 steel in the ferrite phase field, Journal of Nuclear Materials 485 (2017) 23-38.

DOI: 10.1016/j.jnucmat.2016.12.019

Google Scholar

[15] A. Puype, L. Malerba, N. De Wispeleare, R. Petrov, J. Sietsma, Effect of processing on microstructural features and mechanical properties of a reduced activation ferritic/martensitic EUROFER steel grade, Journal of Nuclear Materials 494 (2017) 1-9.

DOI: 10.1016/j.jnucmat.2017.07.001

Google Scholar

[16] Z. Lu, R.G. Faulkner, N. Riddle, F.D. Martino, K. Yang, Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels, Journal of Nuclear Materials 386-388 (2009) 445-448.

DOI: 10.1016/j.jnucmat.2008.12.152

Google Scholar

[17] H. Zhang, B. Long, Y. Dai, Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP, Journal of Nuclear Materials 377 (2008) 122–131.

DOI: 10.1016/j.jnucmat.2008.02.037

Google Scholar

[18] Y.Q. Wang, M. Gorley, S. Kabra, E. Surrey, Influence of a 1.5 T magnetic field on the tensile properties of Eurofer-97 steel, Fusion Engineering and Design 141 (2019) 68-72.

DOI: 10.1016/j.fusengdes.2019.02.081

Google Scholar

[19] M. De Santcis, A. Fava, G. Lovicu, R. Montanari, M. Richetta, C. Testani, A. Varone, Temperature dependent mechanical behaviour of ODS steels, Materials Science Forum 941 (2018) 257-262.

DOI: 10.4028/www.scientific.net/msf.941.257

Google Scholar

[20] R. Schaeublin, T. Leguey, P. Spatig, N. Baluc, M. Victoria, Microstructure and mechanical properties of two ODS ferritic/martensitic steels, Journal of Nuclear Materials 307–311 (2002) 778–782.

DOI: 10.1016/s0022-3115(02)01193-5

Google Scholar

[21] N. Baluc, D.S. Gelles, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, B. van der Schaaf, Jinnan Yu, Status of reduced activation ferritic/martensitic steel development, Journal of Nuclear Materials 367–370 (2007) 33–41.

DOI: 10.1016/j.jnucmat.2007.03.036

Google Scholar

[22] Steven J. Zinkle, Advanced materials for fusion technology, Fusion Engineering and Design 74 (2005) 31–40.

DOI: 10.1016/j.fusengdes.2005.08.008

Google Scholar

[23] R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.A. F. Tavassoli, C. Cayron, A.M. Lancha, P. Fernandez, N. Baluc, R. Schaublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.v.d. Schaaf, E. Lucon, W. Dietz, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Engineering and Design 75–79 (2005) 989–996.

DOI: 10.1016/j.fusengdes.2005.06.186

Google Scholar

[24] Ermile Gaganidze, Ferenc Gillemot, Ildiko Szenthe, Michael Gorley, Michael Rieth, Eberhard Diegele, Development of EUROFER97 database and material property handbook, Fusion Engineering and Design 135 (2018) 9-14.

DOI: 10.1016/j.fusengdes.2018.06.027

Google Scholar

[25] Schuring, E W, and Hofmans, H E. Metallographic characterisation of EUROFER97 plate and bar materials, Netherlands, (2000).

Google Scholar