[1]
D. Lashof, D. Ahuja. Relative contributions of greenhouse gas emissions to global warming. Nature. 344 (1990) 529-531.
DOI: 10.1038/344529a0
Google Scholar
[2]
H. Muroyama, Y. Tsuda, T. Asakoshi, H. Masitah, T. Okanishi, T. Matsui, K. Eguchi. Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 343 (2016) 178-184.
DOI: 10.1016/j.jcat.2016.07.018
Google Scholar
[3]
M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb. Renewable Power-to-Gas: A technological and economic review. Renewable Energy. 85 (2016) 1371-1390.
DOI: 10.1016/j.renene.2015.07.066
Google Scholar
[4]
D. Pandey, K. Ray, R. Bhardwaj, S. Bojja, K.V.R. Chary, G. Deo. Promotion of unsupported nickel catalyst using iron as for CO2 methanation. Int. J. Hydrogen Energy. 43 (2018) 4987-5000.
DOI: 10.1016/j.ijhydene.2018.01.144
Google Scholar
[5]
C. Liang, Ye. Z, D. Dong, S. Zhang, Q. Liu, G. Chen, C. Li, Y. Wang, X. Hu. Methanation of CO2: Impacts of modifying nickel catalysts with variable-valence additives on reaction mechanism. Fuel. 254 (2019) 115654.
DOI: 10.1016/j.fuel.2019.115654
Google Scholar
[6]
G. Garbarino, D. Bellotti, P. Riani, L. Magistri, G. Busca. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behavior and stability. Int. J. Hydrogen Energy. 40 (2015) 9171-9182.
DOI: 10.1016/j.ijhydene.2015.05.059
Google Scholar
[7]
L. Falbo, M. Martinelli, C.G. Visconti, L. Lietti, C. Bassano, P. Deiana. Kinetics of CO2 methanation on a Ru-based catalyst at process conditions relevant for Power-to-Gas applications. Appl. Catal. B: Environ. 225 (2018) 354-363.
DOI: 10.1016/j.apcatb.2017.11.066
Google Scholar
[8]
W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances. 8 (2018) 7651-7669.
DOI: 10.1039/c7ra13546g
Google Scholar
[9]
Panagiotopoulou, Paraskevi. Hydrogenation of CO2 over supported noble metal catalysts. Appl. Catal. A: Gen. 542 (2017) 63-70.
Google Scholar
[10]
Mile B, Stirling D, Zammitt MA, Lovell A, Webb M. The location of nickel oxide and nickel in silica-supported catalysts: two forms of NiO and the assignment of temperature-programmed reduction profiles. J. Catal. 114 (1988) 217-229.
DOI: 10.1002/chin.198911024
Google Scholar
[11]
G. Zhou, H. Liu, Y. Xing, S. Xu, H. Xie, K. Xiong. CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure. J. CO2 Util. 26 (2018) 221-229.
DOI: 10.1016/j.jcou.2018.04.023
Google Scholar
[12]
C. Liang, L. Zhang, Y. Zheng, S. Zhang, Q. Liu, G. Gao, D. Dong, Y. Wang, L. Xu, X. Hu. Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates. Fuel. 262 (2020) 116521.
DOI: 10.1016/j.fuel.2019.116521
Google Scholar
[13]
Pan, Qiushi, Jiaxi Peng, Tianjun Sun, Sheng Wang, and Shudong Wang. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 45 (2014) 74-78.
DOI: 10.1016/j.catcom.2013.10.034
Google Scholar
[14]
Baysal, Zeynep, and Sven Kureti. CO2 methanation on Mg-promoted Fe catalysts. Appl. Catal. B: Environ. 262 (2020) 118300.
DOI: 10.1016/j.apcatb.2019.118300
Google Scholar
[15]
B. Mutz, M. Belimov, W. Wang, P. Sprenger, M-A. Serrer, D. Wang, P. Pfeifer, W. Kleist, J-D. Grunwaldt. Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: Impact of alloy formation on activity and stability. ACS Catal. 7 (2017) 6802-6814.
DOI: 10.1021/acscatal.7b01896
Google Scholar
[16]
R-P. Ye, W. Gong, Z. Sun, Q. Sheng, X. Shi, T. Wang, Y. Yao, J.J. Razing, L. Lin, Z. Zhou, H. Adidharma, J. Tang, M. Fan, Y-G. Yao. Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions. Energy. 188 (2019) 116059.
DOI: 10.1016/j.energy.2019.116059
Google Scholar
[17]
M. Guo, G. Lu. The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts. Catal. Commun. 54 (2014) 55-60.
DOI: 10.1016/j.catcom.2014.05.022
Google Scholar
[18]
M. Stanković, M. Gabrovska, J. Krstić, P. Tzvetkov, M. Shopska, T. Tsacheva, P. Banković, R. Edreva-Kardjieva, D. Jovanović. Effect of silver modification on structure and catalytic performance of Ni-Mg/diatomite catalysts for edible oil hydrogenation. J. Mol. Catal. A: Chem. 297 (2009) 54-62.
DOI: 10.1016/j.molcata.2008.09.004
Google Scholar
[19]
Dębek, Radosław, Monika Radlik, Monika Motak, Maria Elena Galvez et al. Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature-on the effect of basicity. Catal. Today. 257 (2015) 59-65.
DOI: 10.1016/j.cattod.2015.03.017
Google Scholar