[1]
T. Arai, Tool materials and surface treatments, Journal of Materials Processing Technology 35 (1992) 515-528.
DOI: 10.1016/0924-0136(92)90338-s
Google Scholar
[2]
Hitachi Metals, Ltd., YSS High Speed Steels. (2015). www.hitachi-metals.co.jp/e/products/auto/ml/pdf/hsts_b.pdf (accessed 31 May 2020).
Google Scholar
[3]
A. P. Gulyaev, Improved Methods of Heat Treating High Speed Steels to Improve the Cutting Properties, Metallurgy 12 (1937) 65–77.
Google Scholar
[4]
M. Koneshlou, K.M. Asl, F. Khomamizadeh, Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel, Cryogenics 51 (2011) 55–61.
DOI: 10.1016/j.cryogenics.2010.11.001
Google Scholar
[5]
A. Akhbarizadeh, M. A. Golozar, A. Shafeie, M. Kholghy, Effects of austenizing time on wear behavior of D6 tool steel after deep cryogenic treatment , Int. J. Iron Steel Res. 16 (2013) 29–32.
DOI: 10.1016/s1006-706x(10)60023-4
Google Scholar
[6]
Y. Dong, X. Lin, H. Xiao, Deep cryogenic treatment of high speed steel and its mechanism, Heat Treat. Met 3 (1998) 55–59.
Google Scholar
[7]
J. Y. Huang, Y. T. Zhu, X. Z. Liao, I. J Beyerlein, M. A. Bourke, T. E. Mitchell, Microstructure of Cryogenic Treated M2 Tool Steel, Mater. Sci. Eng. A 339 (2003) 241–244.
DOI: 10.1016/s0921-5093(02)00165-x
Google Scholar
[8]
D. Das, K.K. Ray, A.K. Duttac, Influence of temperature of sub-zero treatments on the wear behaviour of die steel, Wear 267 (2009) 1361–1370.
DOI: 10.1016/j.wear.2008.11.029
Google Scholar
[9]
K. P. Kollmer, Applications and Developments in Cryogenic Processing of Materials, The Technology Interface 3 (1999).
Google Scholar
[10]
P. I. Patil, R. G. Tated, A Comparison of Effects of Cryogenic Treatment on Different Types of Steels: A Review, IJCA Proceedings on International Conference in Computational Intelligence (2012) 10–29.
Google Scholar
[11]
A. M. Russell, K. L. Lee, Structure-Property Relations in Nonferrous Metals, John Wiley and Sons, 2005, p.18.
Google Scholar
[12]
S. Kalia, Cryogenic processing, a study of materials at low temperature, J Low Temp, Phys. 158 (2010) 934–945.
DOI: 10.1007/s10909-009-0058-x
Google Scholar
[13]
A.T. Akono, N. X. Randall, F.-J. Ulm, Experimental Determination of The Fracture Toughness via Microscratch tests: Application to Polymers, Ceramics, and Metals, J. Mater. Res 27 (2012) 485-493.
DOI: 10.1557/jmr.2011.402
Google Scholar
[14]
A. T. Akono, F.-J. Ulm, P. M. Reis, J. T. Germaine, Portable Scratch Testing Apparatus That Can Be Fixed on a Universal Testing Machine, Provisional Patent, Massachusetts Institute of Technology (2013).
Google Scholar
[15]
A. T. Akono, F. J. Ulm, Fracture Scaling for Scratch Tests of Axisymmetric Shape, J. Mech. Phys 60 (2012) 379-390.
DOI: 10.1016/j.jmps.2011.12.009
Google Scholar
[16]
K. Worasaen, S. Wannapaiboon, K. Tuchinda, P. Suwanpinij, Characterization of secondary carbide in martensitic stainless steel after deep-cryogenic treatment processes, METAL 2019 Conference Proceedings (2019) 575-580.
DOI: 10.37904/metal.2019.715
Google Scholar
[17]
H. Abrams, Metallography: A Practical Tool for Correlating the Structure and Properties of Materials, ASTM International (1981) p.39.
Google Scholar
[18]
B. D. Fahlman, Materials Chemistry, Springer Science & Business Media, 2011, p.196.
Google Scholar
[19]
F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of Eta-Carbide Precipitation in the Wear Resistance Improvements of Fe-12Cr- Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ Int. 34 (1992) 205–210.
DOI: 10.2355/isijinternational.34.205
Google Scholar
[20]
F. C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, 2008, p.192.
Google Scholar
[21]
C. L. Gogte, K. M. Iyer, R. K. Paretkar, D. R. Peshwe, Deep Subzero Processing of Metals and Alloys: Evolution of Microstructure of AISI T42 Tool Steel, Mater. Manuf. Processes 24 (2009) 718–722.
DOI: 10.1080/10426910902806210
Google Scholar
[22]
P. Paulin, Mechanism and Applicability of Heat Treating at Cryogenic Temperature, Ind. Heat 8 (1992) 24–27.
Google Scholar
[23]
T. Yugandhar, P.K. Krishnan, C. V. B. Rao, R. Kalidas, Cryogenic Treatment and It's Effect on Tool Steel, 6th International Tooling Conference 24 (2002) 671–84.
Google Scholar