Structure and Microstructure of Advanced Materials Characterized by Neutron Diffraction

Article Preview

Abstract:

Characterization of advanced materials by neutron powder diffraction provides information not accessible by other techniques. Thanks to the low absorption of neutrons, the bulk of the material and large-grain samples can be investigated, moreover in situ at elevated temperatures. The neutron diffraction use is demonstrated on two types of technologically important materials: Ti-Zr alloy and Co-Re high temperature alloy. In Ti-Zr alloy, the residual stress relief and microstrain evolution after ECAP was established. Boron influence on TaC strengthening precipitates in Co-Re high temperature alloys was shown not to be significant at the foreseen alloy operation temperatures, although boron content has a strong influence on the matrix phase.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Strunz, L. Kunčická, R. Kocich, G. Farkas, A. Macháčková, V. Ryukhtin: accepted to Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques (2020).

DOI: 10.1134/s1027451020070459

Google Scholar

[2] J. Rösler, D. Mukherji, T. Baranski, Adv. Eng. Mater. 9 (2007) 876,.

Google Scholar

[3] D. Mukherji, J. Rösler, P. Strunz, R. Gilles, G. Schumacher, S. Piegert, International Journal of Materials Research 102 (2011) 1125,.

Google Scholar

[4] D. Mukherji, P. Strunz, R. Gilles, L. Karge, J. Rösler, Kovove Materialy-Metallic Materials 53 (2015) 287,.

Google Scholar

[5] D. Mukherji, J. Rösler, M. Krueger, M. Heilmaier, M.-C. Boelitz, R. Voelkl, U. Glatzel, L. Szentmiklosi, Scripta Materialia 66 (2012) 60,.

Google Scholar

[6] P. Strunz, Debashis Mukherji, P. Beran, R. Gilles, M. Hofmann, L. Karge, J. Rösler and G. Farkas, Acta Physica Polonica A 134 (2018) 829-837,.

DOI: 10.12693/aphyspola.134.829

Google Scholar

[7] H. M. Grandin, S. Berner, M. Dard, Materials 5 (2012) 1348-1360.

Google Scholar

[8] L. Kunčická, R. Kocich, T.C. Lowe, Prog. Mater. Sci. 88 (2017) 232–280.

Google Scholar

[9] R. Kocich, M. Kursa, I. Szurman, A. Dlouhý, J. Alloys Compd. 509 (2011) 2716–2722.

DOI: 10.1016/j.jallcom.2010.12.003

Google Scholar

[10] R. Kocich, I. Szurman, M. Kursa, J. Fiala, Mater. Sci. Eng. A. 512 (2009) 100–104.

Google Scholar

[11] Information on TKSN-400 web page: http://www.ujf.cas.cz/en/departments/department-of-neutron-physics/instruments/lvr15/hk9/.

Google Scholar

[12] G. Farkas, K. Mathis, J. Pilch, P. Minarik, P. Lukáš, A. Vinogradov, Materials Science and Engineering A 685 (2017) 284-293,.

Google Scholar

[13] E.I. Litvinenko, V. Ryukhtin, A.A. Bogdzel, A.V. Churakov, G. Farkas, Ch. Hervoches, P. Lukas, J. Pilch, J. Saroun, P. Strunz, V.V. Zhuravlev, Nuclear Instruments and Methods in Physics Research A 841 (2017) 5–11.

DOI: 10.1016/j.nima.2016.10.024

Google Scholar

[14] P. Strunz, D. Mukherji, P. Beran, R. Gilles, L. Karge, M. Hofmann, M. Hoelzel, J. Rösler, G. Farkas, Met. Mater. Int. 24 (2018) 934-944,.

DOI: 10.1007/s12540-018-0121-8

Google Scholar

[15] P. Beran, D. Mukherji, P. Strunz, R. Gilles, L. Karge, M. Hofmann, M. Hoelzel, J. Rösler, G. Farkas, Metals 8 (2018) 621,.

DOI: 10.3390/met8080621

Google Scholar

[16] M. Hofmann, R. Schneider, G.A. Seidl, J. Kornmeier, R. Wimpory, U. Garbe, H.G. Brokmeier, Phys. B Condens. Matter. 385–386 (2006) 1035,.

DOI: 10.1016/j.physb.2006.05.331

Google Scholar

[17] J. Rodríguez-Carvajal, Phys. B Condens. Matter. 192 (1993) 55.

Google Scholar

[18] D. Mukherji, P. Strunz, S. Piegert, R. Gilles, M. Hofmann, M. Hoelzel, J. Roesler, Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science 43A (2012) 1834-1844,.

Google Scholar