[1]
J. Kim, M. Ishihara, Y. Koga, et al, Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition, Appl. Phys. Lett. 98 (2011) 091502.
DOI: 10.1063/1.3561747
Google Scholar
[2]
A. K. Geim, Graphene: Status and Prospects, Science. 324 (2009) 1530-1534.
Google Scholar
[3]
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, et al, Ultrahigh electron mobility in suspended graphene, Solid State Communications. 146 (2008) 351-355.
DOI: 10.1016/j.ssc.2008.02.024
Google Scholar
[4]
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, et al, Fine Structure Constant Defines Visual Transparency of Graphene, Science. 320 (2008) 1308.
DOI: 10.1126/science.1156965
Google Scholar
[5]
S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, et al, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnology. 5 (2010) 574-578.
DOI: 10.1038/nnano.2010.132
Google Scholar
[6]
T. Kobayashi, M. Bando, N. Kimura, et al, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process, Appl. Phys. Lett. 102 (2013) 023112.
DOI: 10.1063/1.4776707
Google Scholar
[7]
T. Yamada, M. Ishihara, J. Kim, et al, A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature, Carbon. 50 (2012) 2615-2619.
DOI: 10.1016/j.carbon.2012.02.020
Google Scholar
[8]
T. Yamada, J. Kim, M. Ishihara, and M. Hasegawa, Low-temperature graphene synthesis using microwave plasma CVD, J. Phys. D: Appl. Phys. 46 (2013) 063001.
DOI: 10.1088/0022-3727/46/6/063001
Google Scholar
[9]
T. Yamada, M. Ishihara. And M. Hasegawa, Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition, Thin Solid Films. 532 (2013) 89-93.
DOI: 10.1016/j.tsf.2012.12.102
Google Scholar
[10]
Z. sun, Z. Yan, J. Yao, E. Beitler, et al, Growth of graphene from solid carbon sources, Nature. 468(2010) 549-552.
DOI: 10.1038/nature09579
Google Scholar
[11]
R. Arai, Y. Furukawa, M. Morishima, and T. Kuzumaki, Formation of a transparent Electroconductive Film Derived from Fullerene Thin Film, T. Jpn. Inst. Met. Mater. 77 (2013) 59-63.
DOI: 10.2320/jinstmet.77.59
Google Scholar
[12]
K. Ishii, M. Iwamura, T. Yamada, and T. Kuzumaki, Preparation of Optically Transparent Graphitic Film by Phase Transformation of C60 Molecules, sensors and materials. 29 (2017)785-794.
DOI: 10.18494/sam.2017.1470
Google Scholar
[13]
L. M. A. Perdigao, S. N. Sabki, J. M. Garfitt, et al, Graphene Formation by Decomposition of C60, J. Phys. Chem. C. 115 (2011) 7472-7476.
Google Scholar
[14]
Y. Zhang, Z. Li, P. Kim, L. Zhang, and C. Zhou, Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene, ACS NANO. 6 (2012) 126-132.
DOI: 10.1021/nn202996r
Google Scholar
[15]
W. S. Leong, H. Gong, and John T. L. Thong, Low-Contact-Resistance Graphene Devices with Nickel-Etched-Graphene Contacts, ACS NANO. 8 (2014) 994-1001.
DOI: 10.1021/nn405834b
Google Scholar
[16]
M. Losurdo, M. M. Giangregorio, et al, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys. Chem. Chem. Phys. 13 (2011) 20836-20843.
DOI: 10.1039/c1cp22347j
Google Scholar
[17]
S. Coubak, P. L. Levesque, E. Gaufres, et al, Graphene CVD: Interplay Between Growth and Etching on Morphology and Stacking by Hydrogen and Oxidizing Impurities, J. Phys. Chem. C 118 (2014) 21532-21540.
DOI: 10.1021/jp5070215
Google Scholar