Forming an Optically Transparent Graphene Film via the Transformation of C60 Molecules

Article Preview

Abstract:

This study aims to optimize the production conditions for forming graphene directly on a quartz substrate, using a carbon 60 (C60) thin film as a solid carbon source. In this experiment, we focused on the relationships between the thickness of the C60 film and the nickel (Ni) catalyst film and the heat treatment conditions. As the thicknesses of the C60 and Ni catalyst films increased, high-crystallinity multi-layered graphene was formed, however the optical transparency of the graphene film decreased. Scanning Electron Microscopy (SEM) observations and Raman scattering spectroscopy showed that after changing the atmosphere of the heat-treatment from an argon (Ar) gas to an Ar+ hydrogen (H2) gas, the optical transparency of the graphene film was remarkably improved, due to the migration and vaporization of the Ni film, and due to etching of the multi-layered graphene.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1549-1554

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kim, M. Ishihara, Y. Koga, et al, Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition, Appl. Phys. Lett. 98 (2011) 091502.

DOI: 10.1063/1.3561747

Google Scholar

[2] A. K. Geim, Graphene: Status and Prospects, Science. 324 (2009) 1530-1534.

Google Scholar

[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, et al, Ultrahigh electron mobility in suspended graphene, Solid State Communications. 146 (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[4] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, et al, Fine Structure Constant Defines Visual Transparency of Graphene, Science. 320 (2008) 1308.

DOI: 10.1126/science.1156965

Google Scholar

[5] S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, et al, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnology. 5 (2010) 574-578.

DOI: 10.1038/nnano.2010.132

Google Scholar

[6] T. Kobayashi, M. Bando, N. Kimura, et al, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process, Appl. Phys. Lett. 102 (2013) 023112.

DOI: 10.1063/1.4776707

Google Scholar

[7] T. Yamada, M. Ishihara, J. Kim, et al, A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature, Carbon. 50 (2012) 2615-2619.

DOI: 10.1016/j.carbon.2012.02.020

Google Scholar

[8] T. Yamada, J. Kim, M. Ishihara, and M. Hasegawa, Low-temperature graphene synthesis using microwave plasma CVD, J. Phys. D: Appl. Phys. 46 (2013) 063001.

DOI: 10.1088/0022-3727/46/6/063001

Google Scholar

[9] T. Yamada, M. Ishihara. And M. Hasegawa, Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition, Thin Solid Films. 532 (2013) 89-93.

DOI: 10.1016/j.tsf.2012.12.102

Google Scholar

[10] Z. sun, Z. Yan, J. Yao, E. Beitler, et al, Growth of graphene from solid carbon sources, Nature. 468(2010) 549-552.

DOI: 10.1038/nature09579

Google Scholar

[11] R. Arai, Y. Furukawa, M. Morishima, and T. Kuzumaki, Formation of a transparent Electroconductive Film Derived from Fullerene Thin Film, T. Jpn. Inst. Met. Mater. 77 (2013) 59-63.

DOI: 10.2320/jinstmet.77.59

Google Scholar

[12] K. Ishii, M. Iwamura, T. Yamada, and T. Kuzumaki, Preparation of Optically Transparent Graphitic Film by Phase Transformation of C60 Molecules, sensors and materials. 29 (2017)785-794.

DOI: 10.18494/sam.2017.1470

Google Scholar

[13] L. M. A. Perdigao, S. N. Sabki, J. M. Garfitt, et al, Graphene Formation by Decomposition of C60, J. Phys. Chem. C. 115 (2011) 7472-7476.

Google Scholar

[14] Y. Zhang, Z. Li, P. Kim, L. Zhang, and C. Zhou, Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene, ACS NANO. 6 (2012) 126-132.

DOI: 10.1021/nn202996r

Google Scholar

[15] W. S. Leong, H. Gong, and John T. L. Thong, Low-Contact-Resistance Graphene Devices with Nickel-Etched-Graphene Contacts, ACS NANO. 8 (2014) 994-1001.

DOI: 10.1021/nn405834b

Google Scholar

[16] M. Losurdo, M. M. Giangregorio, et al, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys. Chem. Chem. Phys. 13 (2011) 20836-20843.

DOI: 10.1039/c1cp22347j

Google Scholar

[17] S. Coubak, P. L. Levesque, E. Gaufres, et al, Graphene CVD: Interplay Between Growth and Etching on Morphology and Stacking by Hydrogen and Oxidizing Impurities, J. Phys. Chem. C 118 (2014) 21532-21540.

DOI: 10.1021/jp5070215

Google Scholar