[1]
M.M. Trexler, N.N. Thadhani. Mechanical properties of bulk metallic glasses, Prog. Mater Sci. 55(8) (2010) 759-839.
DOI: 10.1016/j.pmatsci.2010.04.002
Google Scholar
[2]
W.H. Wang, C. Dong, C.H. Shek. Bulk Metallic Glasses, Mater. Sci. Eng. R 44(2-3) (2004) 45-89.
Google Scholar
[3]
C.A. Schuh, T.C. Hufnagel, U. Ramamurty. Mechanical behavior of amorphous alloys, Acta Mater. 55(12) (2007) 4067-4109.
DOI: 10.1016/j.actamat.2007.01.052
Google Scholar
[4]
M. Telford. The case for bulk metallic glass, Mater. Today 7(3) (2004) 36-43.
Google Scholar
[5]
C.T. Wang, Y. He, C. Ji, Y. He, W. Han, X.C. Pan, Investigation on shock-induced reaction characteristics of a Zr-based metallic glass, Intermetallics 93 (2018) 383-388.
DOI: 10.1016/j.intermet.2017.11.004
Google Scholar
[6]
C. Suryanarayana, A. Inoue . Bulk metallic glasses, Florida: CRC Press Taylor & Francis Group, (2011).
Google Scholar
[7]
P.Sharma, W. Zhang, K. Amiya, H. Kimura, A. Inoue. Nanoscale Patterning of Zr-Al-Cu-Ni Metallic Glass Thin Films Deposited by Magnetron Sputtering, J. Nanosci. Nanotechnol. 5(3) 2005 416-420.
DOI: 10.1166/jnn.2005.055
Google Scholar
[8]
Y. Kawamura, T. Shibata, A. Inoue, T.Masumot. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15bulk metallic glass. Acta Mater. 46(1) (1998) 253-263.
DOI: 10.1016/s1359-6454(97)00235-8
Google Scholar
[9]
W. Zheng, Y.j. Huang, G.Y. Wang, P.K. Liaw, J. Shen. Influence of Strain Rate on Compressive Deformation Behavior of a Zr-Cu-Ni-Al Bulk Metallic Glass at Room Temperature, Metall. Mater. Trans. A 42(6) (2011) 1491-1498.
DOI: 10.1007/s11661-011-0632-0
Google Scholar
[10]
H.A. Bruck, A.J. Rosakis, W.L. Johnson. The dynamic compressive behavior of beryllium bearing bulk metallic glasses, J. Mater. Res. 11(02) (1996) 503-511.
DOI: 10.1557/jmr.1996.0060
Google Scholar
[11]
J. Zhang, J.M. Park, D.H. Kim, H.S. Kim. Effect of strain rate on compressive behavior of Ti45Zr16Ni9Cu10Be20 bulk metallic glass, Mater. Sci. Eng. A 449-451 (2007) 290-294.
DOI: 10.1016/j.msea.2006.02.405
Google Scholar
[12]
W.D. Liu, K.X. Liu, Notable internal thermal effect on the yielding of metallic glasses, Appl. Phys. Lett. 100(14) (2012) 141904.
DOI: 10.1063/1.3700923
Google Scholar
[13]
S.L. Zhu, X.M. Wang, F.X. Qin, A. Inoue. Influence of temperature on viscous flow deformation of Zr55Cu30Al10Ni5 bulk glassy alloy in supercooled liquid region, Intermetallics, 15(7) (2007) 885-890.
DOI: 10.1016/j.intermet.2006.10.047
Google Scholar
[14]
M.C. Li, M.Q. Jiang, S. Yang, F. Jiang, L. He, J. Sun. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass, Mater. Sci. Eng. A 680 (2017) 21-26.
DOI: 10.1016/j.msea.2016.10.081
Google Scholar
[15]
T. Yamasaki, S. Maeda, D. Okai, T. Fukami, Y. Yokoyama , N. Nishiyama, H. M. Kimura, A. Inoue. Viscosity measurements of Zr55Cu30Al10Ni5 supercooled liquid alloys by using penetration viscometer under high-speed heating conditions, Intermetallics, 14(8-9) (2006) 11102-1106.
DOI: 10.1016/j.intermet.2006.01.046
Google Scholar
[16]
B.B. Liu , B.Y. Liu, X.S. Fang, L.Q. Zhang, F. Ye. G.L. Chen. Viscosity of Zr55Cu30Al10Ni5 bulk metallic glass, measured by laser viscometer, J. Alloys Compd. 504 (2010) 8-10.
DOI: 10.1016/j.jallcom.2010.02.197
Google Scholar
[17]
W.L. Johnson, K. Samwer. A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence, Phys. Rev. Lett. 95(19) 2005 195501.
Google Scholar