Syngas Production by Dry Methane Reforming over Mg Doped NiO-ZrO2 Catalysts

Article Preview

Abstract:

In producing syngas, which offers environmental benefits, dry reforming of methane (DRM) could promote the installation of the future carbon tax. This reaction has been already extensively studied and nowadays, no stable catalysts are enough efficient to scale up the process to its industrialization. It has been suggested that basic sites can affect the performance of catalyst. It is known that magnesium promotes the performance of catalyst. In order to understand the effect of Mg for dry reforming of methane, NiO-MgO-ZrO2 catalysts were studied. The activity was carried out at 700 °C in a fixed-bed micro-reactor under CH4:CO2:Ar=1:1:8. It was shown that the introduction of Mg led to an unexpected decrease in the activity when compared to non-promoted catalyst. It was also shown that the surface area, pore-volume, pore diameter, and weak basicity decreased when the Mg was introduced into NiO-ZrO2 catalyst. All these properties can cause a decrease in the activity, selectivity, and stability of NiO-MgO-ZrO2 catalyst for DRM.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1585-1590

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Titus, T. Roussiere, G. Wasserschaff, S. Schunk, A. Milanov, E. Schwab, G. Wagner, O. Oeckler, R. Gläser, Dry reforming of methane with carbon dioxide over NiO–MgO–ZrO2, Catal. Today, 270 (2016) 68-75.

DOI: 10.1016/j.cattod.2015.09.027

Google Scholar

[2] H. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P.D. Costa, M.E. Gálvez, La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures, Fuel, 182 (2016) 8-16.

DOI: 10.1016/j.fuel.2016.05.073

Google Scholar

[3] M.-S. Fan, A.Z. Abdullah, S. Bhatia, Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: preparation, characterization and activity studies, Appl. Catal. B: Environ. 100 (2010) 365-377.

DOI: 10.1016/j.apcatb.2010.08.013

Google Scholar

[4] D.M. Walker, S.L. Pettit, J.T. Wolan, J.N. Kuhn, Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni–MgO–(Ce, Zr)O2 catalysts, Appl. Catal. A: Gen. 445 (2012) 61-68.

DOI: 10.1016/j.apcata.2012.08.015

Google Scholar

[5] V. García, J.J. Fernández, W. Ruíz, F. Mondragón, A. Moreno, Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane, Catal. Commun. 11 (2009) 240-246.

DOI: 10.1016/j.catcom.2009.10.003

Google Scholar

[6] K.Y. Koo, H.-S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process, Appl. Catal. A: Gen. 340 (2008) 183-190.

DOI: 10.1016/j.apcata.2008.02.009

Google Scholar

[7] M. Rezaei, S.M. Alavi, S. Sahebdelfar, L. Xinmei, L. Qian, Z.-F. Yan, CO2−CH4 Reforming over Nickel Catalysts Supported on Mesoporous Nanocrystalline Zirconia with High Surface Area, Energ. fuel. 21 (2007) 581-589.

DOI: 10.1021/ef0606005

Google Scholar

[8] Y. Wang, L. Yao, Y. Wang, S. Wang, Q. Zhao, D. Mao, C. Hu, Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ZrO2 catalyst, ACS Catal. 8 (2018) 6495-6506.

DOI: 10.1021/acscatal.8b00584

Google Scholar

[9] Y. Wang, L. Yao, S. Wang, D. Mao, C. Hu, Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: a review, Fuel Process. Technol. 169 (2018) 199-206.

DOI: 10.1016/j.fuproc.2017.10.007

Google Scholar

[10] Y.-H. Wang, H.-M. Liu, B.-Q. Xu, Durable Ni/MgO catalysts for CO2 reforming of methane: activity and metal–support interaction, J. Mol. Catal. A: Chem. 299 (2009) 44-52.

DOI: 10.1016/j.molcata.2008.09.025

Google Scholar

[11] K. Świrk, M.E. Gálvez, M. Motak, T. Grzybek, M. Rønning, P. Da Costa, Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts, Int. J. Hydrogen Energ. 44 (2019) 274-286.

DOI: 10.1016/j.ijhydene.2018.02.164

Google Scholar

[12] R. Dębek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane dry reforming over hydrotalcite-derived Ni–Mg–Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability, Catal. Sci. Technol. 6 (2016) 6705-6715.

DOI: 10.1039/c6cy00906a

Google Scholar

[13] X. Wang, Y. Hong, H. Shi, J. Szanyi, Kinetic modeling and transient DRIFTS–MS studies of CO2 methanation over Ru/Al2O3 catalysts, J. catal. 343 (2016) 185-195.

DOI: 10.1016/j.jcat.2016.02.001

Google Scholar

[14] W.-J. Jang, D.-W. Jeong, J.-O. Shim, H.-M. Kim, W.-B. Han, J.W. Bae, H.-S. Roh, Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases, Renew. energ. 79 (2015) 91-95.

DOI: 10.1016/j.renene.2014.08.032

Google Scholar

[15] S. Sokolov, E.V. Kondratenko, M.M. Pohl, A. Barkschat, U. Rodemerck, Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst, Appl. Catal. B Environ. s 113–114 (2012) 19-30.

DOI: 10.1016/j.apcatb.2011.09.035

Google Scholar