[1]
J. Titus, T. Roussiere, G. Wasserschaff, S. Schunk, A. Milanov, E. Schwab, G. Wagner, O. Oeckler, R. Gläser, Dry reforming of methane with carbon dioxide over NiO–MgO–ZrO2, Catal. Today, 270 (2016) 68-75.
DOI: 10.1016/j.cattod.2015.09.027
Google Scholar
[2]
H. Liu, D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P.D. Costa, M.E. Gálvez, La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures, Fuel, 182 (2016) 8-16.
DOI: 10.1016/j.fuel.2016.05.073
Google Scholar
[3]
M.-S. Fan, A.Z. Abdullah, S. Bhatia, Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: preparation, characterization and activity studies, Appl. Catal. B: Environ. 100 (2010) 365-377.
DOI: 10.1016/j.apcatb.2010.08.013
Google Scholar
[4]
D.M. Walker, S.L. Pettit, J.T. Wolan, J.N. Kuhn, Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni–MgO–(Ce, Zr)O2 catalysts, Appl. Catal. A: Gen. 445 (2012) 61-68.
DOI: 10.1016/j.apcata.2012.08.015
Google Scholar
[5]
V. García, J.J. Fernández, W. Ruíz, F. Mondragón, A. Moreno, Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane, Catal. Commun. 11 (2009) 240-246.
DOI: 10.1016/j.catcom.2009.10.003
Google Scholar
[6]
K.Y. Koo, H.-S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process, Appl. Catal. A: Gen. 340 (2008) 183-190.
DOI: 10.1016/j.apcata.2008.02.009
Google Scholar
[7]
M. Rezaei, S.M. Alavi, S. Sahebdelfar, L. Xinmei, L. Qian, Z.-F. Yan, CO2−CH4 Reforming over Nickel Catalysts Supported on Mesoporous Nanocrystalline Zirconia with High Surface Area, Energ. fuel. 21 (2007) 581-589.
DOI: 10.1021/ef0606005
Google Scholar
[8]
Y. Wang, L. Yao, Y. Wang, S. Wang, Q. Zhao, D. Mao, C. Hu, Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ZrO2 catalyst, ACS Catal. 8 (2018) 6495-6506.
DOI: 10.1021/acscatal.8b00584
Google Scholar
[9]
Y. Wang, L. Yao, S. Wang, D. Mao, C. Hu, Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: a review, Fuel Process. Technol. 169 (2018) 199-206.
DOI: 10.1016/j.fuproc.2017.10.007
Google Scholar
[10]
Y.-H. Wang, H.-M. Liu, B.-Q. Xu, Durable Ni/MgO catalysts for CO2 reforming of methane: activity and metal–support interaction, J. Mol. Catal. A: Chem. 299 (2009) 44-52.
DOI: 10.1016/j.molcata.2008.09.025
Google Scholar
[11]
K. Świrk, M.E. Gálvez, M. Motak, T. Grzybek, M. Rønning, P. Da Costa, Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts, Int. J. Hydrogen Energ. 44 (2019) 274-286.
DOI: 10.1016/j.ijhydene.2018.02.164
Google Scholar
[12]
R. Dębek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane dry reforming over hydrotalcite-derived Ni–Mg–Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability, Catal. Sci. Technol. 6 (2016) 6705-6715.
DOI: 10.1039/c6cy00906a
Google Scholar
[13]
X. Wang, Y. Hong, H. Shi, J. Szanyi, Kinetic modeling and transient DRIFTS–MS studies of CO2 methanation over Ru/Al2O3 catalysts, J. catal. 343 (2016) 185-195.
DOI: 10.1016/j.jcat.2016.02.001
Google Scholar
[14]
W.-J. Jang, D.-W. Jeong, J.-O. Shim, H.-M. Kim, W.-B. Han, J.W. Bae, H.-S. Roh, Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases, Renew. energ. 79 (2015) 91-95.
DOI: 10.1016/j.renene.2014.08.032
Google Scholar
[15]
S. Sokolov, E.V. Kondratenko, M.M. Pohl, A. Barkschat, U. Rodemerck, Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst, Appl. Catal. B Environ. s 113–114 (2012) 19-30.
DOI: 10.1016/j.apcatb.2011.09.035
Google Scholar