[1]
Information Office of the State Council of the People's Republic of China. China's Nuclear Security[N]. The People's Daily,2019-09-04(017).
Google Scholar
[2]
Yang, J., Wang, W.W., Qiu, S. Z., Tian, W. X., Su, G. H., & Wu, Y. W. . (2012). Simulation and analysis on 10-in. cold leg small break loca for ap1000. Annals of Nuclear Energy, 46(none), 81-89.
DOI: 10.1016/j.anucene.2012.03.007
Google Scholar
[3]
Hung, Z., Ferng, Y., Hsu, W., Pei, B., & Chen, Y. . (2015). Analysis of ap1000 containment passive cooling system during a loss-of-coolant accident. Annals of Nuclear Energy.
DOI: 10.1016/j.anucene.2015.06.027
Google Scholar
[4]
Yongzheng, Ma, Guang, Ran, Nanjun, & Chen, et al. (2016). Investigation of mechanical properties and proton irradiation behaviors of sa-738 gr.b steel used as reactor containment. Nuclear Materials and Energy.
DOI: 10.1016/j.nme.2016.07.010
Google Scholar
[5]
ASME, Boiler and Pressure Vessel Code. Section II, Part A, SA-738/SA-738M Specification for Pressure Vessel Plates, Heat Treated, Carbon-manganese-silicon Steel, for Moderate and Lower Temperature Service, ASME, (2001).
DOI: 10.1520/a0738_a0738m-03a
Google Scholar
[6]
Qibiao, H. , Shanyu, J. , & Weihua, S. . (2014). Study on heat treatment process of sa738gr.b steel plats for nuclear power plant. Shandong Metallurgy.
Google Scholar
[7]
Lisha, S.. (2015). Microstructure and security analysis of steel used for nuclear power plant with heat treatment. Foundry Technology.
Google Scholar
[8]
Bi, Z. C., Zhang, J. M. , Liu, X. D. , Jiang, S. Y. , & Sun, W. H. . (2011). Microstructure and mechanical properties of q and t heavy plate for nuclear power station purpose. Journal of Iron and Steel Research, 23(10), 59-62.
Google Scholar
[9]
Zhang, Y. L., & Hui, H. . (2019). Investigation of mechanical properties and ductile-brittle transition behaviors of sa738gr.b steel used as reactor containment. Key Engineering Materials, 795, 66-73.
DOI: 10.4028/www.scientific.net/kem.795.66
Google Scholar
[10]
GB/T 228-2010, Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature. Beijing, China, (2011).
Google Scholar
[11]
Jiang, Z., Wang, P., Li, D., & Li, Y.. (2015). Effects of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25cr-1mo-0.25v steel. Acta Metallurgica Sinica -Chinese Edition-, 51(8), 925-934.
Google Scholar
[12]
Lan, L. Y., Qiu, C. L., Zhao, D. W., Gao, X. H. , & Du, L. X. . (2011). Effect of austenite grain size on isothermal bainite transformation in low carbon microalloyed steel. Materials Science and Technology, 27(11), 1657-1663.
DOI: 10.1179/1743284710y.0000000026
Google Scholar
[13]
Skogsmo, J., & Atrens, A.. (1994). Analytical electron microscopy of grain boundaries in high-strength steels. Acta Metallurgica et Materialia, 42(4), 1139-1146.
DOI: 10.1016/0956-7151(94)90130-9
Google Scholar