[1]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Progr. Mater. Sci. 51 (2006) 427–556.
Google Scholar
[2]
O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics, Springer-Verlag, Berlin, (1992).
Google Scholar
[3]
S.V. Zherebtsov, E.A. Kudryavtsev, G.A. Salishchev, B.B. Straumal, S.L. Semiatin. Microstructure evolution and mechanical behavior of ultrafine Ti-6Al-4V during low-temperature superplastic deformation, Acta Mater. 121 (2016) 152-163.
DOI: 10.1016/j.actamat.2016.09.003
Google Scholar
[4]
S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing, Acta Mater. Vol. 59(10) (2011) pp.4138-4150.
DOI: 10.1016/j.actamat.2011.03.037
Google Scholar
[5]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progr. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[6]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progr. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[7]
S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Yu. Mironov, S.L. Semiatin, Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing, Scripta Mater. 51 (2004) 1147-1151.
DOI: 10.1016/j.scriptamat.2004.08.018
Google Scholar
[8]
S. Zherebtsov, A. Mazur, G. Salishchev, W. Lojkowski, Effect of hydrostatic extrusion at 600–700°C on the structure and properties of Ti–6Al–4V alloy. Mater. Sci. Eng. A 485 (2008) 39-45.
DOI: 10.1016/j.msea.2007.08.081
Google Scholar
[9]
F. Humphreys M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, (2004).
Google Scholar
[10]
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold, and severe plastic deformation conditions, Progr. Mater. Sci. 60 (2014) 130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[11]
S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, G. Salishchev, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging, Mater. Sci. Eng. A 536 (2012) 190– 196.
DOI: 10.1016/j.msea.2011.12.102
Google Scholar
[12]
G.A. Salishchev, E.A. Kudrjavtsev, S.V. Zherebtsov, S.L. Semiatin, Low temperature superplasticity of Ti-6Al-4V processed by warm multidirectional forging, Mater. Sci. Forum 735 (2013) 253-258.
DOI: 10.21236/ada565955
Google Scholar
[13]
G.A. Salishchev, R.M. Imayev, O.N. Senkov, V.M. Imayev, N.K. Gabdullin, M.R. Shagiev, A.V. Kusnetsov, F.H. Froes, Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working, Mater. Sci. Eng. A 286 (2000) 236-243.
DOI: 10.1016/s0921-5093(00)00806-6
Google Scholar
[14]
W.W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28 (1957) 333–339.
Google Scholar
[15]
N. Stefansson, S.L. Semiatin, Mechanisms of globularization of Ti-6Al-4V during static heat treatment, Metall. Mater. Trans. A 34 (2003) 691-698.
DOI: 10.1007/s11661-003-0103-3
Google Scholar
[16]
S.L. Semiatin, D.U. Furrer, Modeling of microstructure evolution during the thermomechanical processing of titanium alloys, in: S.L. Semiatin, D.U. Furrer (Eds.), ASM Handbook, vol. 22. Fundamentals of Modeling for Metals Processing, Materials Park, OH: ASM International, 2009, 536-552.
DOI: 10.31399/asm.hb.v22a.a0005409
Google Scholar
[17]
W. Pantleon, On the apparent saturation of the average disorientation angle with plastic deformation, Scripta Mater. 53 (2005) 757-762.
DOI: 10.1016/j.scriptamat.2005.05.007
Google Scholar
[18]
S. Zherebtsov, G. Salishchev, L. Semiatin, Production of bulk nanocrystalline mill products by conventional metalforming methods, in: H. Garbacz, I. Semenova, S. Zherebtsov, M. Motyka (Eds.), Nanocrystalline Titanium, Elsevier, 2019, 71-100.
DOI: 10.1016/b978-0-12-814599-9.00005-5
Google Scholar
[19]
G.A. Salishchev, O.R. Valiakhmetov, R.M. Galeyev, Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, J. Mater. Sci. 28 (1993) 2898–2902.
DOI: 10.1007/bf00354692
Google Scholar
[20]
S.V. Zherebtsov, S.Yu. Mironov, G.A. Salishchev, Submicrocrystalline structure formation in Ti and Ti-64 alloy by warm abc, deformation, Mater. Sci. Forum 551-552 (2007) 183-188.
DOI: 10.4028/www.scientific.net/msf.551-552.183
Google Scholar
[21]
A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation, Scripta Mater. 43 (2000) 819-825.
DOI: 10.1016/s1359-6462(00)00496-6
Google Scholar
[22]
D. Klimenko, M. Ozerov, S. Suresh, N, Stepanov, M. Tikhonovsky, G. Salishchev, S. Zherebtsov. Microstructure evolution and properties of Ti-6Al-4V alloy doped with Fe and Mo during deformation at 800°C. Defect Diff. Forum. 385 (2018) 144-149.
DOI: 10.4028/www.scientific.net/ddf.385.144
Google Scholar
[23]
M.A. Murzinova, S.V. Zherebtsov, G.A. Salishchev, Dependence of the specific energy of the β/α interface in the VT6 titanium alloy on the heating temperature in the interval 600–975°C, J. Exp. Theor. Phys. 122 (2016) 705-715.
DOI: 10.1134/s1063776116020205
Google Scholar
[24]
M. Cabibbo, S. Zherebtsov, S. Mironov, G. Salishchev, Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800°C, J. Mater. Sci. 48 (2013) 1100-1110.
DOI: 10.1007/s10853-012-6842-z
Google Scholar