[1]
J.H. Lee, I.H. Oh, J.H. Jang, S.K. Hong, H.K. Park, Mechanical properties and microstructural evolution of WC binderless and WC-Co hard materials by the heat treatment process, J. Alloys Compd. 786(2019) 1-10.
DOI: 10.1016/j.jallcom.2019.01.282
Google Scholar
[2]
K.Kornaus, M.Raczka, A.Gubernat, D.Zientara, Pressureless sintering of binderless tungsten carbide, J. Eur. Ceram. Soc. 37(2017) 4567-4576.
DOI: 10.1016/j.jeurceramsoc.2017.06.008
Google Scholar
[3]
W. Tang, L. Zhang, Y. Chen, H.D. Zhang, L. Zhou, Corrosion and strength degradation behaviors of binderless WC material and WC-Co hardmetal in alkaline solution: A comparative investigation, Int. J. Refract. Met. Hard Mater. 68 (2017) 1–8.
DOI: 10.1016/j.ijrmhm.2017.06.003
Google Scholar
[4]
J. Poteschke, V. Richter, A. Michaelis, Fundamentals of sintering nano scaled binderless hardmetals, Int. J. Refract. Met. Hard Mater. 49(2015) 124-132.
DOI: 10.1016/j.ijrmhm.2014.04.022
Google Scholar
[5]
Y.F. Zhang, Z. Kou, Z.W. Wang, M. Yang, J.R. Lu, H. Liang, S.X. Guan, Q.W. Hu, H.X. Gong, D.W.He, Magic high-pressure strengthening in tungsten carbide system, Ceram. Int. 45 (2019) 8721-8725.
DOI: 10.1016/j.ceramint.2019.01.195
Google Scholar
[6]
W. Tang, L. Zhang, J.F. Zhu, Y. Chen, W.Tian, T. Liu, Effect of direct current patterns on densification and mechanical properties of binderless tungsten carbides fabricated by the spark plasma sintering system,Int. J. Refract.Met.Hard Mater.64 (2017) 90–97.
DOI: 10.1016/j.ijrmhm.2017.01.010
Google Scholar
[7]
D.Demirskyi, A.Ragulya, D.Agrawal, Initial stage sintering of binderless tungsten carbide powder under microwave radiation, Ceram. Int. 37(2011) 505–512.
DOI: 10.1016/j.ceramint.2010.09.036
Google Scholar
[8]
I.Hussainova, A. Smirnov, M. Antonov, Mechanical characterization and wear performance of WC-ZrO2–Ni cermets produced by hot isostatic pressing,Adv. Mater. Res. 214 (2011) 344–348.
DOI: 10.4028/www.scientific.net/amr.214.344
Google Scholar
[9]
L.Girardini, M. Zadra, F. Casari, A. Molinari, SPS, binderless WC powders, and the problem of sub carbide,Met. Powder Rep. 63 (2008) 18–22.
DOI: 10.1016/s0026-0657(09)70039-6
Google Scholar
[10]
K. Luo, Q. Chen, Y.X. Cai, Ultrafine binderless tungsten carbide prepared by spark plasma sintering process, Mater. Res. Appl. 4 (2010) 534-537.
Google Scholar
[11]
H.C. Kim, I.J. Shon, J.K. Yoon, J.M. Doh, Consolidation of ultra-fine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties, Int. J. Refract. Met. Hard Mater.25 (2007) 46-52.
DOI: 10.1016/j.ijrmhm.2005.11.004
Google Scholar
[12]
I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties and rapid consolidation of ultra-hard tungsten carbide, J. Alloys Compd. 489 (2010) 4-8.
DOI: 10.1016/j.jallcom.2009.09.040
Google Scholar
[13]
X.J. Xia, X.Q. Li, J.M. Li, D.H. Zheng, Microstructure and characterization of WC-2.8 wt% Al2O3-6.8 wt% ZrO2 composites produced by spark plasma sintering, Ceram. Int. 42 (2016) 14182–14188.
DOI: 10.1016/j.ceramint.2016.06.044
Google Scholar
[14]
B.W. Kwak, J.H. Song, B.S. Kim, I.J. Shon, Mechanical properties and rapid sintering of nanostructured WC and WC–TiAl3 hard materials by the pulsed current activated heating, Int. J. Refract. Met. Hard Mater.54 (2016) 244–250.
DOI: 10.1016/j.ijrmhm.2015.08.003
Google Scholar
[15]
A. Nino, Y.Izu, T.Sekine, S.Sugiyama, H.Taimatsu, Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC,Int. J. Refract. Met. Hard Mater.69 (2017) 259–265.
DOI: 10.1016/j.ijrmhm.2017.09.002
Google Scholar
[16]
T. Cao, X.Q. Li, J.M. Li, M.N. Zhang, H.Qiu, Effect of sintering temperature on phase constitution and mechanical properties of WC-1.0 wt% carbon nanotube composites, Ceram. Int. 44 (2018) 164-169.
DOI: 10.1016/j.ceramint.2017.09.154
Google Scholar
[17]
J. Pötschke, T. Gestrich, V. Richter, Grain growth inhibition of hardmetals during initial heat-up,Int. J. Refract. Met. Hard Mater.72 (2018) 117–125.
DOI: 10.1016/j.ijrmhm.2017.12.016
Google Scholar
[18]
H.H. Nersisyan, H.I. Won, C.W. Won, J.H. Lee, Study of the combustion synthesis process of nanostructured WC and WC–Co, Mater. Chem. Phys.94 (2005) 153–158.
DOI: 10.1016/j.matchemphys.2005.04.024
Google Scholar
[19]
T.S. Srivatsan, R. Woods, M.Petraroli, T.S. Sudarshan, An investigation of the influence of powder particle size on microstructure and hardness of bulk samples of tungsten carbide, Powder Technol. 122 (2002) 54-66.
DOI: 10.1016/s0032-5910(01)00391-6
Google Scholar
[20]
S.I. Cha, S.H. Hong, Microstructure of binderless tungsten carbide sintered by spark plasma sintering process,Mater. Sci. Eng. A. 356 (2003) 381-389.
DOI: 10.1016/s0921-5093(03)00151-5
Google Scholar
[21]
X.Q. Liu, T. Lin, Z.M. Guo, F.E. Cui, J. Guo, Consolidation of ultrafine binderless cemented carbide by spark plasma sintering, J. Iron Steel Res. Int. 14 (2007) 82-84.
DOI: 10.1016/s1006-706x(08)60056-4
Google Scholar
[22]
B. Huang, L.D. Chen, S.Q. Bai, Bulk ultrafine binderless WC prepared by spark plasma sintering, Scr. Mater. 54 (2006) 441-445.
DOI: 10.1016/j.scriptamat.2005.10.014
Google Scholar
[23]
L.M. Luo, Y.C. Wu, J. Li, Y.C. Zheng, Preparation of nickel-coated tungsten carbide powders by room temperature ultrasonic-assisted electroless plating, Surf. Coat. Technol. 206 (2011) 1091-1095.
DOI: 10.1016/j.surfcoat.2011.07.078
Google Scholar
[24]
F. Xue, L. Zhu, J.F. Wang, Z.B. Tu, Catalytic role of surface pre-treatment of noble-metal-like tungsten carbide powder on electroless deposition of nickel, Surf. Coat. Technol. 265 (2015) 32-37.
DOI: 10.1016/j.surfcoat.2015.01.066
Google Scholar
[25]
J. Poetschke, V. Richter, T. Gestrich, A.Michaelis, Grain growth during sintering of tungsten carbide ceramics, Int. J. Refract. Met. Hard Mater.43 (2014) 309-316.
DOI: 10.1016/j.ijrmhm.2014.01.001
Google Scholar
[26]
D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Indentation fracture of WC–Co cermets, J. Mater. Sci. 20 (1985) 1873–1882.
DOI: 10.1007/bf00555296
Google Scholar
[27]
J. Gubicza, G. Ribárik, G.R. Goren-Muginstein, A.R. Rosen,T. Ungár, The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction. Mater. Sci. Eng. A. 309-310 (2001) 60-63.
DOI: 10.1016/s0921-5093(00)01666-x
Google Scholar