Effects of Powder Microscopic Defects on Densification and Mechanical Properties of WC via Spark Plasma Sintering

Article Preview

Abstract:

The WC composite powder was synthesized by a new specific chemical activation technique. A large number of lattice defects such as surface humps, dislocations and stacking fault exist in the surface of the WC powder after chemical activation technique. By using such activated WC powder, the binderless WC cemented carbide with high density (15.54 g/cm3), super hardness (average 26.29 GPa) and excellent fracture toughness (8.9 MPa.m1/2) can be fabricated by SPS at 1700 °C and 50 MPa pressure. The improvement in density, hardness and fracture toughness are respectively 4.5%, 15.3% and 17.1% compared to when using the original WC powder. This improvement is because microscopic defects on the surface of the WC powder can greatly improve surface free energy of the powder, which improves the sintering activity and reduces the sintering temperature of the WC powder.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1770-1777

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Lee, I.H. Oh, J.H. Jang, S.K. Hong, H.K. Park, Mechanical properties and microstructural evolution of WC binderless and WC-Co hard materials by the heat treatment process, J. Alloys Compd. 786(2019) 1-10.

DOI: 10.1016/j.jallcom.2019.01.282

Google Scholar

[2] K.Kornaus, M.Raczka, A.Gubernat, D.Zientara, Pressureless sintering of binderless tungsten carbide, J. Eur. Ceram. Soc. 37(2017) 4567-4576.

DOI: 10.1016/j.jeurceramsoc.2017.06.008

Google Scholar

[3] W. Tang, L. Zhang, Y. Chen, H.D. Zhang, L. Zhou, Corrosion and strength degradation behaviors of binderless WC material and WC-Co hardmetal in alkaline solution: A comparative investigation, Int. J. Refract. Met. Hard Mater. 68 (2017) 1–8.

DOI: 10.1016/j.ijrmhm.2017.06.003

Google Scholar

[4] J. Poteschke, V. Richter, A. Michaelis, Fundamentals of sintering nano scaled binderless hardmetals, Int. J. Refract. Met. Hard Mater. 49(2015) 124-132.

DOI: 10.1016/j.ijrmhm.2014.04.022

Google Scholar

[5] Y.F. Zhang, Z. Kou, Z.W. Wang, M. Yang, J.R. Lu, H. Liang, S.X. Guan, Q.W. Hu, H.X. Gong, D.W.He, Magic high-pressure strengthening in tungsten carbide system, Ceram. Int. 45 (2019) 8721-8725.

DOI: 10.1016/j.ceramint.2019.01.195

Google Scholar

[6] W. Tang, L. Zhang, J.F. Zhu, Y. Chen, W.Tian, T. Liu, Effect of direct current patterns on densification and mechanical properties of binderless tungsten carbides fabricated by the spark plasma sintering system,Int. J. Refract.Met.Hard Mater.64 (2017) 90–97.

DOI: 10.1016/j.ijrmhm.2017.01.010

Google Scholar

[7] D.Demirskyi, A.Ragulya, D.Agrawal, Initial stage sintering of binderless tungsten carbide powder under microwave radiation, Ceram. Int. 37(2011) 505–512.

DOI: 10.1016/j.ceramint.2010.09.036

Google Scholar

[8] I.Hussainova, A. Smirnov, M. Antonov, Mechanical characterization and wear performance of WC-ZrO2–Ni cermets produced by hot isostatic pressing,Adv. Mater. Res. 214 (2011) 344–348.

DOI: 10.4028/www.scientific.net/amr.214.344

Google Scholar

[9] L.Girardini, M. Zadra, F. Casari, A. Molinari, SPS, binderless WC powders, and the problem of sub carbide,Met. Powder Rep. 63 (2008) 18–22.

DOI: 10.1016/s0026-0657(09)70039-6

Google Scholar

[10] K. Luo, Q. Chen, Y.X. Cai, Ultrafine binderless tungsten carbide prepared by spark plasma sintering process, Mater. Res. Appl. 4 (2010) 534-537.

Google Scholar

[11] H.C. Kim, I.J. Shon, J.K. Yoon, J.M. Doh, Consolidation of ultra-fine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties, Int. J. Refract. Met. Hard Mater.25 (2007) 46-52.

DOI: 10.1016/j.ijrmhm.2005.11.004

Google Scholar

[12] I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties and rapid consolidation of ultra-hard tungsten carbide, J. Alloys Compd. 489 (2010) 4-8.

DOI: 10.1016/j.jallcom.2009.09.040

Google Scholar

[13] X.J. Xia, X.Q. Li, J.M. Li, D.H. Zheng, Microstructure and characterization of WC-2.8 wt% Al2O3-6.8 wt% ZrO2 composites produced by spark plasma sintering, Ceram. Int. 42 (2016) 14182–14188.

DOI: 10.1016/j.ceramint.2016.06.044

Google Scholar

[14] B.W. Kwak, J.H. Song, B.S. Kim, I.J. Shon, Mechanical properties and rapid sintering of nanostructured WC and WC–TiAl3 hard materials by the pulsed current activated heating, Int. J. Refract. Met. Hard Mater.54 (2016) 244–250.

DOI: 10.1016/j.ijrmhm.2015.08.003

Google Scholar

[15] A. Nino, Y.Izu, T.Sekine, S.Sugiyama, H.Taimatsu, Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC,Int. J. Refract. Met. Hard Mater.69 (2017) 259–265.

DOI: 10.1016/j.ijrmhm.2017.09.002

Google Scholar

[16] T. Cao, X.Q. Li, J.M. Li, M.N. Zhang, H.Qiu, Effect of sintering temperature on phase constitution and mechanical properties of WC-1.0 wt% carbon nanotube composites, Ceram. Int. 44 (2018) 164-169.

DOI: 10.1016/j.ceramint.2017.09.154

Google Scholar

[17] J. Pötschke, T. Gestrich, V. Richter, Grain growth inhibition of hardmetals during initial heat-up,Int. J. Refract. Met. Hard Mater.72 (2018) 117–125.

DOI: 10.1016/j.ijrmhm.2017.12.016

Google Scholar

[18] H.H. Nersisyan, H.I. Won, C.W. Won, J.H. Lee, Study of the combustion synthesis process of nanostructured WC and WC–Co, Mater. Chem. Phys.94 (2005) 153–158.

DOI: 10.1016/j.matchemphys.2005.04.024

Google Scholar

[19] T.S. Srivatsan, R. Woods, M.Petraroli, T.S. Sudarshan, An investigation of the influence of powder particle size on microstructure and hardness of bulk samples of tungsten carbide, Powder Technol. 122 (2002) 54-66.

DOI: 10.1016/s0032-5910(01)00391-6

Google Scholar

[20] S.I. Cha, S.H. Hong, Microstructure of binderless tungsten carbide sintered by spark plasma sintering process,Mater. Sci. Eng. A. 356 (2003) 381-389.

DOI: 10.1016/s0921-5093(03)00151-5

Google Scholar

[21] X.Q. Liu, T. Lin, Z.M. Guo, F.E. Cui, J. Guo, Consolidation of ultrafine binderless cemented carbide by spark plasma sintering, J. Iron Steel Res. Int. 14 (2007) 82-84.

DOI: 10.1016/s1006-706x(08)60056-4

Google Scholar

[22] B. Huang, L.D. Chen, S.Q. Bai, Bulk ultrafine binderless WC prepared by spark plasma sintering, Scr. Mater. 54 (2006) 441-445.

DOI: 10.1016/j.scriptamat.2005.10.014

Google Scholar

[23] L.M. Luo, Y.C. Wu, J. Li, Y.C. Zheng, Preparation of nickel-coated tungsten carbide powders by room temperature ultrasonic-assisted electroless plating, Surf. Coat. Technol. 206 (2011) 1091-1095.

DOI: 10.1016/j.surfcoat.2011.07.078

Google Scholar

[24] F. Xue, L. Zhu, J.F. Wang, Z.B. Tu, Catalytic role of surface pre-treatment of noble-metal-like tungsten carbide powder on electroless deposition of nickel, Surf. Coat. Technol. 265 (2015) 32-37.

DOI: 10.1016/j.surfcoat.2015.01.066

Google Scholar

[25] J. Poetschke, V. Richter, T. Gestrich, A.Michaelis, Grain growth during sintering of tungsten carbide ceramics, Int. J. Refract. Met. Hard Mater.43 (2014) 309-316.

DOI: 10.1016/j.ijrmhm.2014.01.001

Google Scholar

[26] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Indentation fracture of WC–Co cermets, J. Mater. Sci. 20 (1985) 1873–1882.

DOI: 10.1007/bf00555296

Google Scholar

[27] J. Gubicza, G. Ribárik, G.R. Goren-Muginstein, A.R. Rosen,T. Ungár, The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction. Mater. Sci. Eng. A. 309-310 (2001) 60-63.

DOI: 10.1016/s0921-5093(00)01666-x

Google Scholar