[1]
G.J. Hutchings, Gold catalysis in chemical processing, Catal. Today, 72 (2002) 11-17.
Google Scholar
[2]
V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities[J]. Adv. Colloid Interfac., 145 (2009) 83-96.
DOI: 10.1016/j.cis.2008.09.002
Google Scholar
[3]
X. Wang, M. Vara, M. Luo, et al., Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability, J. Am. Chem. Soc., 137 (2015) 15036-15042.
DOI: 10.1021/jacs.5b10059
Google Scholar
[4]
M. Liu, Y. Pang, B. Zhang, et al., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature, 537 (2016) 382-386.
Google Scholar
[5]
B. Wu, N. Zheng, Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications, Nano Today, 8 (2013) 168-197.
DOI: 10.1016/j.nantod.2013.02.006
Google Scholar
[6]
G. Wu, W. Zhu, Q. He, et al. 2D and 3D orientation mapping in nanostructured metals: A review, Nano Materials Science, 2 (2020) 50-57.
DOI: 10.1016/j.nanoms.2020.03.006
Google Scholar
[7]
A. Kobler, C. Kubel, Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM, Ultramicroscopy, 173 (2017) 84-94.
DOI: 10.1016/j.ultramic.2016.07.007
Google Scholar
[8]
X. Huang, M. Zhu, Z.Q. Feng, et al. Grain orientation mapping in gradient nanostructured metals produced by surface plastic deformation, in: S. Dhar,, S. Fffister, A. Godfrey et al. (eds), Proceedings of 38th Risø International Symposium on Materials Science: Advanced Metallic Materials by Microstructural Design,; Technical University of Denmark. 2017, pp.55-62.
Google Scholar
[9]
H.H. Liu, S. Schmidt, H.F. Poulsen, et al., Three-dimensional orientation mapping in the transmission electron microscope, Science, 332 (2011) 833-834.
DOI: 10.1126/science.1202202
Google Scholar
[10]
G. Wu, S. Zaefferer, Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image matching, Ultramicroscopy, 109 (2009) 1317-1325.
DOI: 10.1016/j.ultramic.2009.06.002
Google Scholar
[11]
https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation.
Google Scholar
[12]
P.A. Midgley, M. Weyland, 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography, Ultramicroscopy, 96 (2003) 413-431.
DOI: 10.1016/s0304-3991(03)00105-0
Google Scholar
[13]
R. Gonzalez, R. Woods, S. Eddins, Digital Image Processing Using MATLAB, second ed Gatesmark Publishing, (2009).
Google Scholar
[14]
https://ww2.mathworks.cn/help/images/ref/imadjust.html?requestedDomain=cn.
Google Scholar
[15]
https://ww2.mathworks.cn/help/images/ref/imbinarize.html?s_tid=doc_ta.
Google Scholar
[16]
P.M. Larsen, S. Schmidt, Improved orientation sampling for indexing diffraction patterns of polycrystalline materials, J. Appl. Crystallogr. 50 (2017) 1571-1582.
DOI: 10.1107/s1600576717012882
Google Scholar
[17]
G. Wu, D. Juul Jensen, Automatic determination of recrystallization parameters based on EBSD mapping, Mater. Charact. 59 (2008) 794-800.
DOI: 10.1016/j.matchar.2007.06.015
Google Scholar
[18]
M. Groeber, S. Ghosh, M.D. Uchic, et al., A framework for automated analysis and simulation of 3D polycrystalline microstructures: Part 1: Statistical characterization, Acta Mater. 56 (2008) 1257-1273.
DOI: 10.1016/j.actamat.2007.11.041
Google Scholar
[19]
N. Kawase, M. Kato, H. Nishioka, et al., Transmission electron microtomography without the missing wedge, for quantitative structural analysis, Ultramicroscopy, 107 (2007) 8-15.
DOI: 10.1016/j.ultramic.2006.04.007
Google Scholar