Metallic Composites, Prepared by Deformation Processing

Article Preview

Abstract:

The main point of successful manufacture of metallic composites by direct bonding of dissimilar materials is achieving a homogeneous interface bonding. Two different types of deformation techniques for fabrication of metal composites were investigated. The first one was developed on the basis of high pressure torsion associated with a high energy impact on the material where part of energy involved can be dissipated via non equilibrium phase transition realization. This deformation due to high shear deformations allows not only to form a nanostructure, but also to bond dissimilar metals. Moreover, this method allows for a relatively short time and in a number of compounds to receive in one step at room temperature monolithic composites of sufficient size to certify the structure and properties. The second technique is diffusion bonding which integrate one material with the other by pressure under high temperature. In order to clarify the bonding mechanism by plastic deformation of dissimilar materials, the microstructural and some mechanical properties were studied in the processed samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1759-1764

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] А.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mat. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[2] D. Rahmatabadi, M. Tayyebi, R. Hashemi, G. Faraji, Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB process. International Journal of Minerals, Metallurgy and Materials 25 (2018) 564–572.

DOI: 10.1007/s12613-018-1603-x

Google Scholar

[3] X. Zeng, Yu. Wang, X. Li, X. Li, T. Zhao, Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate, Journal of Manufacturing Processes, 45 (2019) 166-175.

DOI: 10.1016/j.jmapro.2019.07.007

Google Scholar

[4] B. Bihari, A.K. Singh An, Overview on Different Processing Parameters in Particulate Reinforced Metal Matrix Composite Fabricated by Stir Casting Process, International Journal of Engineering Research and Applications 7 (2017) 42–48.

DOI: 10.9790/9622-0701034248

Google Scholar

[5] L.Wang, Y.C. Wang, A.P. Zhilyaev, A.V. Korznikov, S.K.Li, E.Korznikova, T.G. Langdon, Microstructure and texture evolution in ultrafine-grained pure Ti processed by equal-channel angular pressing with subsequent dynamic compression, Scripta Mater., 77, (2014) 33-36.

DOI: 10.1016/j.scriptamat.2014.01.011

Google Scholar

[6] A.V. Korznikov, G.F. Korznikova, M.M. Myshlyaev, R.Z. Valiev, D.Salimonenko, O. Dimitrov, Evolution of nanocrystalline Ni structure during heating, Physics of Metals and Metallography, 84 (4) (1997) 413-417.

Google Scholar

[7] E.A. Korznikova, S.Y. Mironov, A.V. Korznikov, A.P. Zhilyaev, T.G. Langdon, Microstructural evolution and electro-resistivity in HPT nickel, Materials Science and Engineering A, 556 (2012) 437-445.

DOI: 10.1016/j.msea.2012.07.010

Google Scholar

[8] E. Korznikova, E. Schafler, G. Steiner, M.J. Zehetbauer, Measurements of vacancy type defects in SPD deformed Ni, TMS Annual Meeting, (2006) pp.97-102.

Google Scholar

[9] M. T. Pérez-Prado, A. A. Gimazov, O. A. Ruano, M. E. Kassner, A. P. Zhilyaev, Bulk nanocrystalline ω-Zr by high-pressure torsion, Scripta Mater 58 (2008) 219-222.

DOI: 10.1016/j.scriptamat.2007.09.043

Google Scholar

[10] D. Hernandez-Escobar, J. Marcus, J.-K. Han, R. R. Unocic, M. Kawasaki, C.l J. Boehlert, Effect of post-deformation annealing on the microstructure and micro-mechanical behavior of Zn–Mg hybrids processed by High-Pressure Torsion, Materials Science and Engineering: A, 771 (2020) 138578.

DOI: 10.1016/j.msea.2019.138578

Google Scholar

[11] V.N. Danilenko, S.N. Sergeev, J.A. Baimova, G.F. Korznikova, K.S. Nazarov,R. Kh.Khisamov, A.M. Glezer ,R.R. Mulyukov, An approach for fabrication of Al-Cu composite by high pressure torsion, Mater. Lett . 236 (2019) 51-55.

DOI: 10.1016/j.matlet.2018.09.158

Google Scholar

[12] G.F. Korznikova, K.S. Nazarov, R.Kh. Khisamov, S.N. Sergeev, R.U. Shayachmetov, G.R. Khalikova, J.A. Baimova, A.M. Glezer, R.R. Mulyukov, Intermetallic growth kinetics and microstructure evolution in Al-Cu-Al metal-matrix composite processed by high pressure torsion, Mater. Lett. 253 (2019) 412–415.

DOI: 10.1016/j.matlet.2019.07.124

Google Scholar

[13] M. Kawasaki, S. H. Jung, J.-M. Park, J. Lee, J. Jang, J.-K. Han, Mechanical Bonding of Aluminum Hybrid Alloy Systems through High-Pressure Torsion, Advanced Engineering Materials 22 (2020) 1900483 (1-9).

DOI: 10.1002/adem.201900483

Google Scholar

[14] W. Beck, Superplastic forming and diffusion bonding of titanium andtitanium alloys, in: C. Leyens, M. Peters (Eds.), Titanium and Titanium Alloys,Wiley-VCH, Weinheim, Germany, 2003, p.278.

DOI: 10.1002/3527602119.ch10

Google Scholar

[15] C.M. Cepeda-Jimenez, F. Carreño, O.A. Ruano, A.A. Sarkeeva, A.A. Kruglov, R.Ya. Lutfullin, Influence of interfacial defects on the impact toughness of solid state diffusion bonded Ti-6Al-4V alloy based multilayer composites, Mater Sci Eng: А. 563 (2013) 28-35.

DOI: 10.1016/j.msea.2012.11.052

Google Scholar

[16] J.D. Embury, N.J. Petch, A.E. Wraith, E.S. Wright, The fracture of mild steel laminates, Transaction of the Metallurgical Society of AIME, 239 (1967) 114-118.

Google Scholar

[17] R. Kulagin, Y. Beygelzimer, Yu. Ivanisenko, A. Mazilkin, B. Straumal, H. Hahn, Instabilities of interfaces between dissimilar metals induced by high pressure torsion, Mater. Lett ., 222 (2018) 172–175.

DOI: 10.1016/j.matlet.2018.03.200

Google Scholar

[18] D.R. Lesuer, C. K. Syn, O. Sherby, J. Wadsworth, J. J. Lewandowski, W.H. Hunt, Mechanical behavior of laminated metal composites, International Materials Reviews 41(5) (1996) 169-197.

DOI: 10.1179/imr.1996.41.5.169

Google Scholar