[1]
W.K. Pang, Z. Oo, J.V. Hanna, I.M. Low Oxidation characteristics of Ti3AlC2, Ti3SiC2 and Ti2AlC, in I.M. Low (Ed.), Advances in Science and Technology of Mn+1AXn Phases, Elsevier, 2012, pp.289-322.
DOI: 10.1533/9780857096012.289
Google Scholar
[2]
X.K. Qian, Methods of MAX-phase synthesis and densification – I, in I.M. Low (Ed.), Advances in Science and Technology of Mn+1AXn Phases, Elsevier, 2012, pp.1-19.
DOI: 10.1533/9780857096012.1
Google Scholar
[3]
A. Dmitruk, A. Żak, K. Naplocha, W. Dudziński, J. Morgiel, Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration, Mater. Characterization, 146 (2018) 182-188.
DOI: 10.1016/j.matchar.2018.10.005
Google Scholar
[4]
M. Yoshida, Microstructural examination during the formation of Ti3AlC2 from mixtures of Ti/Al/C and Ti/Al/TiC, in I.M. Low (Ed.), Advances in Science and Technology of Mn+1AXn Phases, Elsevier, 2012, pp.81-101.
DOI: 10.1533/9780857096012.81
Google Scholar
[5]
A. Zhou, C.A. Wang, Y. Hunag, Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering, J. Mater. Sci., 38 (2003) 3111-3115.
Google Scholar
[6]
M.W. Barsoum, T. El-Raghy, M. Ali, Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5, Metallurgical Mater. Trans. A, 31 (2000) 1857-1865.
DOI: 10.1007/s11661-006-0243-3
Google Scholar
[7]
W. Ping, B.C. Mei, X.L. Hong, W.B. Zhou, Synthesis of Ti2AlC by hot pressing and its mechanical and electrical properties, Trans. Nonferrous Metals Soc. China, 17 (2007) 1001-1004.
DOI: 10.1016/s1003-6326(07)60215-5
Google Scholar
[8]
C. Magnus, D. Cooper, J. Sharp, W.M. Rainforth, Microstructural evolution and wear mechanism of Ti3AlC2–Ti2AlC dual MAX phase composite consolidated by spark plasma sintering (SPS), Wear, 438 (2019) Article number 203013.
DOI: 10.1016/j.wear.2019.203013
Google Scholar
[9]
T. Galvin, N.C. Hyatt, W.M. Rainforth, I.M. Reaney, D. Shepherd, Molten salt synthesis of MAX phases in the Ti-Al-C system, J. Eur. Ceram. Soc. 38 (2018) 4585-4589.
DOI: 10.1016/j.jeurceramsoc.2018.06.034
Google Scholar
[10]
N. Shahin, S.H. Kazemi, A. Heidarpour, Mechanochemical synthesis mechanism of Ti3AlC2 MAX phase from elemental powders of Ti, Al and C, Adv. Powder Technol. 27 (2016) 1775-1780.
DOI: 10.1016/j.apt.2016.06.008
Google Scholar
[11]
Y. Mizuno, K. Sato, M. Mrinalini, T.S. Suzuki, Y. Sakka, Fabrication of textured Ti3AlC2 by spark plasma sintering and their anisotropic mechanical properties, J. Ceram. Soc. Japan, 121 (2013) 366-369.
DOI: 10.2109/jcersj2.121.366
Google Scholar
[12]
B. Dermeik, H. Lorenz, A. Bonet, N. Travitzky, Highly Filled Papers, on their Manufacturing, Processing, and Applications, Adv. Eng. Mater. 21 (2019) Article number 1900180.
DOI: 10.1002/adem.201900180
Google Scholar
[13]
N. Travitzky, A. Bonet, B. Dermeik, et al. Additive manufacturing of ceramic-based materials, Adv. Eng. Mater. 16 (2014) 729-754.
DOI: 10.1002/adem.201400097
Google Scholar
[14]
K. Li, E. Kashkarov, M. Syrtanov, et al. Preceramic Paper-Derived SiCf/SiCp Composites Obtained by Spark Plasma Sintering: Processing, Microstructure and Mechanical Properties, Mater. 13 (2020) Article number 607.
DOI: 10.3390/ma13030607
Google Scholar
[15]
E.B. Kashkarov, M.S. Syrtanov, E.P. Sedanova, A.S. Ivashutenko, A.M. Lider, N. Travitzky, Fabrication of paper-derived Ti3SiC2-based materials by spark plasma sintering, Adv. Eng. Mater. (2020) Article number 2000136.
DOI: 10.1002/adem.202000136
Google Scholar
[16]
M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao, M. Olazar, Kinetic study of lignocellulosic biomass oxidative pyrolysis, Fuel 95 (2012) 305-311.
DOI: 10.1016/j.fuel.2011.10.008
Google Scholar
[17]
P. Giudicianni, G. Cardone, R. Ragucci, Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. J. Anal. Appl. Pyrolysis, 100 (2013) 213-222.
DOI: 10.1016/j.jaap.2012.12.026
Google Scholar
[18]
J.X. Chen, Y.C. Zhou, H.B. Zhang, D.T. Wan, M.Y. Liu, Thermal stability of Ti3AlC2/Al2O3 composites in high vacuum, Mater. Chem. Phys. 104 (2007) 109-112.
DOI: 10.1016/j.matchemphys.2007.02.091
Google Scholar
[19]
W.K. Pang, I.M. Low, B.H. O'Connor, A.J. Studer, V.K. Peterson, et al., Comparison of thermal stability in MAX211 and 312 phases, J. Phys. Conf. Ser. 251 (2010) Article number 012025.
DOI: 10.1088/1742-6596/251/1/012025
Google Scholar
[20]
L. Zheng, F. Li, Y. Zhou, Preparation, microstructure, and mechanical properties of TiB2 using Ti3AlC2 as a sintering aid, J. Am. Ceram. Soc. 95 (2012) 2028-2034.
DOI: 10.1111/j.1551-2916.2012.05204.x
Google Scholar