[1]
C. Leyens, M. Peters (Eds.), Titanium and titanium alloys: fundamentals and applications. John Wiley & Sons, (2003).
Google Scholar
[2]
R.P. Kolli, A. Devaraj, A Review of Metastable Beta Titanium Alloys, Metals 8 (2018) 506-1-41.
DOI: 10.3390/met8070506
Google Scholar
[3]
B.S. Hickman, The Formation of Omega Phase in Titanium and Zirconium Alloys: A Review, J. Mater. Sci. 4 (1969) 554-563.
DOI: 10.1007/bf00550217
Google Scholar
[4]
T. Li et al., New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys, Acta Mater. 106 (2016) 353-366.
Google Scholar
[5]
D. de Fontaine, N.E. Paton, J.C. Williams, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, Acta. Metall. 19 (1971) 1153-1162.
DOI: 10.1016/0001-6160(71)90047-2
Google Scholar
[6]
M. Tane et al., Diffusionless isothermal omega transformation in titanium alloys driven by quenched-in compositional fluctuations, Phys. Rev. Materials 3 (2019) 043604-1-9.
DOI: 10.1103/physrevmaterials.3.043604
Google Scholar
[7]
M.E. Brown, P.K. Gallagher (Eds.), Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. Elsevier, (2011).
Google Scholar
[8]
R.J. Enzinger et al., High-precision isothermal dilatometry as tool for quantitative analysis of precipitation kinetics: case study of dilute Al alloy, J. Mater. Sci. 54 (2019) 5083-5091.
DOI: 10.1007/s10853-018-03210-z
Google Scholar
[9]
E. Hengge et al., Quantitative volumetric identification of precipitates in dilute alloys using high-precision isothermal dilatometry, Philos. Mag. Lett. 98 (2018) 301-309.
DOI: 10.1080/09500839.2018.1542170
Google Scholar
[10]
M. Luckabauer, W. Sprengel, R. Würschum, A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements, Rev. Sci. Instrum. 87 (2016) 075116-1-7.
DOI: 10.1063/1.4959200
Google Scholar
[11]
G. Aurelio et al., Metastable Phases in the Ti-V System: Part I. Neutron Diffraction Study and Assessment of Structural Properties, Metall. Mater. Trans. A 33 (2002) 1307-1317.
DOI: 10.1007/s11661-002-0057-x
Google Scholar
[12]
D. Choudhuri et al., Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy, Acta Mater. 13 (2017) 215-228.
DOI: 10.1016/j.actamat.2017.03.047
Google Scholar
[13]
M. Hendrickson, The role of misfit strain and oxygen content on formation and evolution of omega precipitate in metastable beta-titanium alloys, Diss., University of North Texas, (2016).
Google Scholar
[14]
J.C. Williams, M.J. Blackburn, The influence of Misfit on the morphology and stability of omega phase in titanium--transition metal alloys, Trans. Met. Soc. AIME 245 (1969) 2352-2355.
Google Scholar
[15]
J.E. Gragg Jr., The omega phase in titanium-vanadium alloys, Diss., Rice University, (1964).
Google Scholar