Density Functional Theory Study of the Adsorption of Metal Adatoms on Graphene

Article Preview

Abstract:

In this study, we investigated the influence of the interaction between graphene and other materials as a basis for controlling the electronic structure of nanocarbon materials. First-principles calculations based on density functional theory (DFT) were performed on the optimized structure, adsorption energies and electronic states when copper and aluminum atoms were placed on graphene. As a result, we found that copper and aluminum are stable at the bridge and the hollow site, respectively. It was found that the adsorption energy of aluminum atom on graphene is larger than that of copper atom. It is considered that the difference in adsorption energy is caused by the difference in the dominant electron orbitals of the copper atom and the aluminum atom.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1863-1868

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Geimand and K. S. Novoselov , The rise of graphene, Nat. Mater. 6 (2007) 183-191.

Google Scholar

[2] M.J. Allen, V.C. Tungand, and R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2010) 132 -145.

Google Scholar

[3] P. Giannozzi, S. Baroni, N.Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, et al., A modular and open-source software project for quantum simulation of materials, J. Phys. Condens. Matter 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[4] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[5] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17978.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[6] A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci. 95 (2014) 337-350.

DOI: 10.1016/j.commatsci.2014.07.043

Google Scholar

[7] S. Grimme, J. Antony, S. Ehrlich, and H. Krig, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys 132 (2010) 154104.

DOI: 10.1063/1.3382344

Google Scholar

[8] S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32 (2011) 1456-1465.

DOI: 10.1002/jcc.21759

Google Scholar

[9] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals Density Functional for General Geometries, Phys. Rev. Lett. 92 (2004) 246401.

DOI: 10.1103/physrevlett.95.109902

Google Scholar

[10] T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond, Phys. Rev. B 76 (2007) 125112.

DOI: 10.1103/physrevb.76.125112

Google Scholar

[11] T. Thonhauser, S. Zuluaga, C. A. Arter, K. Berland, E. Schröder, and P. Hyldgaard, Spin Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks, Phys. Rev. Lett. 115 (2015) 136402.

DOI: 10.1103/physrevlett.115.136402

Google Scholar

[12] M. Amft, S. Lebègue, O. Eriksson, and N. V. Skorodumova, Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions, J. Phys. Condensed Matter, 23 (2011) 395001.

DOI: 10.1088/0953-8984/23/39/395001

Google Scholar

[13] K. T. Chan, J. B. Neaton, and M. L. Cohen, First-principles study of metal adatom adsorption on graphene, Phy. Rev. B 77 (2008) 235430.

DOI: 10.1103/physrevb.77.235430

Google Scholar