[1]
A. K. Geimand and K. S. Novoselov , The rise of graphene, Nat. Mater. 6 (2007) 183-191.
Google Scholar
[2]
M.J. Allen, V.C. Tungand, and R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2010) 132 -145.
Google Scholar
[3]
P. Giannozzi, S. Baroni, N.Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, et al., A modular and open-source software project for quantum simulation of materials, J. Phys. Condens. Matter 21 (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[4]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett 77 (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[5]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17978.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[6]
A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci. 95 (2014) 337-350.
DOI: 10.1016/j.commatsci.2014.07.043
Google Scholar
[7]
S. Grimme, J. Antony, S. Ehrlich, and H. Krig, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys 132 (2010) 154104.
DOI: 10.1063/1.3382344
Google Scholar
[8]
S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32 (2011) 1456-1465.
DOI: 10.1002/jcc.21759
Google Scholar
[9]
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals Density Functional for General Geometries, Phys. Rev. Lett. 92 (2004) 246401.
DOI: 10.1103/physrevlett.95.109902
Google Scholar
[10]
T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond, Phys. Rev. B 76 (2007) 125112.
DOI: 10.1103/physrevb.76.125112
Google Scholar
[11]
T. Thonhauser, S. Zuluaga, C. A. Arter, K. Berland, E. Schröder, and P. Hyldgaard, Spin Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks, Phys. Rev. Lett. 115 (2015) 136402.
DOI: 10.1103/physrevlett.115.136402
Google Scholar
[12]
M. Amft, S. Lebègue, O. Eriksson, and N. V. Skorodumova, Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions, J. Phys. Condensed Matter, 23 (2011) 395001.
DOI: 10.1088/0953-8984/23/39/395001
Google Scholar
[13]
K. T. Chan, J. B. Neaton, and M. L. Cohen, First-principles study of metal adatom adsorption on graphene, Phy. Rev. B 77 (2008) 235430.
DOI: 10.1103/physrevb.77.235430
Google Scholar