Microstructure Factor of Creep Behavior in Near-α Ti Alloy

Article Preview

Abstract:

Heat-resistant Ti-Al-Nb-Zr alloys, which don’t contain Sn, have been designed to obtain good oxidation resistance above 600 °C. In addition, to design Ti alloys with best balance of creep and fatigue properties, prior β grain size which affects fatigue properties and lamellar microstructure which affects creep properties were controlled by heat treatment. In the present study, the effect of microstructure on creep properties of one of the alloys, i.e., Ti-7.5Al-4Nb-4Zr alloy, with the bimodal (B), the lamellar structures in small prior β grains (LS), and the lamellar in large prior β grains (LL) were investigated at 600 °C. The creep deformation mechanism for each microstructure was a power-law creep. However, the creep life varied depending on the microstructures. The longest creep life was obtained in LS with prior β grain size of 90 μm and interlamellar spacing of approximately 10 μm, while the shortest creep life was obtained in LL with prior β grain size of 550 μm and fine interlamellar spacing of less than 2~3 μm. This suggests that creep life is more affected by interlamellar spacing than by prior β grain size.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1882-1889

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yamabe-Mitarai, R. Zempo, T. Kitashima, S. Emura and H. Murakami, Proc. of the 1st International Conf. on 123HiMAT-2015, (2016),335-338.

Google Scholar

[2] Y. Yamabe-Mitarai, A. Jastrzebska, T. Kitashima, S. Emura, H.Murakami, R. Zempo and Z. Pakiela, Proc. of the 13th World Conference on Ti, (TMS, 2016), 917-921.

DOI: 10.1002/9781119296126.ch157

Google Scholar

[3] S. Matsunaga, A. Serizawa and Y. Yamabe-Mitarai, Mater. Trans., 57 (2016), 1902-1907.

Google Scholar

[4] Y. Yamabe-Mitarai, K. Shimagami, H. Masuyama, T. Matsunaga, Y. Toda, T. Ito, Proc. of the 1st International Conf. on 123HiMAT-2019, (2019), 803-811.

Google Scholar

[5] K. Shimagami, T. Ito, Y. Toda, A. Yumoto and Y. Yamabe-Mitarai:Mater. Sci. Eng. 756 (2019), 46-53.

Google Scholar

[6] K. Shimagami, S. Matsunaga, A. Yumoto, T. Ito and Y. Yamabe-Mitarai: Mater. Trans., 58 (2017), 1404-1410.

Google Scholar

[7] U.R. Katnner and W.J. Boettinger: Mater. Sci. Eng. A, 152 (1992), 9-17.

Google Scholar

[8] H. Masuyama, K. Shimagami, T. Ito, M. Shimojo, Y. Yamabe-Mitarai, Proc. of the 1st International Conf. on 123HiMAT-2019, (2019), 812-820.

Google Scholar

[9] H. Masuyama, K. Shimagami, Y. Toda, T. Matsunaga, T. Ito, M. Shimojo, Y. Yamabe-Mitarai: Mater. Trans. 60 (2019), 2336-2345.

DOI: 10.2320/matertrans.mt-maw2019010

Google Scholar

[10] M.F. Ashby and D.R.H. Jones, Engineering Materials 14th Edition, Elsevier, Amsterdam, 2012, pp.315-343.

Google Scholar

[11] H. Luthy, R.A. White and O.D. Sherby, Mater. Sci. Eng., 39 (1979), 211.

Google Scholar

[12] F. R. N. Nabarro, Report of a Conference on the Strength of Solids, The Physical Society, (1948), 75-90.

Google Scholar

[13] C. Herring: J. Appl. Phys., 21 (1950), 437-445.

Google Scholar

[14] R. L. Coble: J. Appl. Phys., 34 (1963), 1679-1682.

Google Scholar

[15] H. J. Frost and M. F. Ashby: Deformation Mechanism Maps, Pergamon Press, (1982), 43-52.

Google Scholar

[16] F. A. Mohamed and T. G. Langdon: Metall. Trans., 5 (1974), 2339-2345.

Google Scholar

[17] O. D. Sherby and J. Wadsworth: Prog. Mater. Sci., 33 (1989), 169-221.

Google Scholar

[18] H. Tanaka, T. Yamada, E. Sato and I. Jimbo, Scr. Mater., 54 (2006), 121-124.

Google Scholar

[19] L. Badea, M. Surand, J. Ruau and B. Viguier, U. P. B. Sci. Bull. Series B, 76 (2014), 185-196.

Google Scholar