[1]
T. Masumoto, K. Fukamichi, Materials Science of Amorphous Metals, Ohm, (1982) 1-291., ISBN 4274085236 (in Japanese).
Google Scholar
[2]
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48 (2000) 279-306.
DOI: 10.1016/s1359-6454(99)00300-6
Google Scholar
[3]
G. Thomas, H. Mori, H. Fujita, R. Sinclair, Electron irradiation induced crystalline amorphous transitions in NiTi alloys, Scripta Metall., 16 (1982) 589-592.
DOI: 10.1016/0036-9748(82)90276-9
Google Scholar
[4]
H. Mori, H. Fujita, Temperature Dependence of Electron-Irradiation Induced Amorphization of NiTi Alloys, Jpn. J. Appl. Phys. 21 (1982) L494-L496.
DOI: 10.1143/jjap.21.l494
Google Scholar
[5]
A. Mogro-Campero, E.L. Hall, J.L. Walter, A.J. Ratkowski, Crystalline to Amorphous Transformation of Fe3B By 1 MeV Electron Irradiation, MRS Proceedings, 7(1981) 203.
DOI: 10.1557/proc-7-203
Google Scholar
[6]
H. Mori, H. Fujita, M. Fujita, Electron Irradiation Induced Amorphization at Dislocations in NiTi, Jpn. J. Appl. Phys., 22 (1983) L94-L96.
DOI: 10.1143/jjap.22.l94
Google Scholar
[7]
Y. Matsukawa, S. Ohnuki, Electron irradiation effect on phase transformation in Ti-Ni shape memory alloy, J. of Nucl. Mater., 239 (1996) 261-266.
DOI: 10.1016/s0022-3115(96)00428-x
Google Scholar
[8]
S. Watanabe, T. Koike, T. Suda, S. Ohnuki, H. Takahashi, N.Q. Lam, Metastable Defect Cluster Formation during Radiation-Induced Amorphization in NiTi, Mater. Trans., 45 (2004) 24-28.
DOI: 10.2320/matertrans.45.24
Google Scholar
[9]
A Nino, T Nagase, Y Umakoshi, Electron Irradiation Induced Phase Transformation in Fe-Nd-B Alloys, Mater. trans., 48 (2007) 1659-1664.
DOI: 10.2320/matertrans.mj200702
Google Scholar
[10]
T. Nagase, K. Takizawa, M. Wakeda, Y. Shibutani, Y. Umakoshi, Electron irradiation-induced solid-state amorphization caused by thermal relaxation of lattice defects, Intermetallics, 18 (2010) 441-450.
DOI: 10.1016/j.intermet.2009.09.003
Google Scholar
[11]
S. Anada, T. Nagase, H. Yasuda, H. Mori, Electron-irradiation-induced phase transition in Cr2M (M = Ti and Al) intermetallic compounds, J. of Alloys and Compounds, 579 (2013) 646-653 (2013).
DOI: 10.1016/j.jallcom.2013.06.122
Google Scholar
[12]
S. Anada, T. Nagase, H. Yasuda, H. Mori, Solid-state amorphization in Ti2Pd intermetallic compounds under fast-electron irradiation, J. of Alloys and Compounds, 581 (2013) 324-329.
DOI: 10.1016/j.jallcom.2013.07.078
Google Scholar
[13]
T. Nagase, A. Sasaki, H. Y. Yasuda, T. Terai, T. Fukuda, T. Kakeshita, In situ transmission-electron-microscopy observation of solid-state amorphization behavior in Ti50Ni44Fe6 alloy by high-voltage electron microscopy, Acta Materialia, 104 (2016) 201-209.
DOI: 10.1016/j.actamat.2015.11.031
Google Scholar
[14]
H. Mori, Current topics in amorphous materials, in: Eds., Y. Sakurai, Y. Hamakawa, T. Masumoto, K. Shirae, K. Suzuki., Physics and Technology, Elsevier Science Publishers, (1997) 120-126., ISBN: 9781483290300.
Google Scholar
[15]
P.R. Okamoto, N.Q. Lam, L.E. Rehn, Physics of crystal-to-glass transformations, Eds., H. Ehrenreich, F. Spaepen, Solid State Physics vol. 52, Academic Press, (1999) 1-155., ISBN 9780080865164.
Google Scholar
[16]
T. Nagase, Progress in Advanced Structural and Functional Materials Design, Advanced materials design by irradiation of high energy particles, Ed., T. Kakeshita, Springer, (2013) 137-153., ISBN 9784431540632.
DOI: 10.1007/978-4-431-54064-9_12
Google Scholar
[17]
T. Nagase, Y. Umakoshi. N. Sumida, Effect of electron irradiation on the phase stability of Fe-9Zr-3B alloy, Mater. Sci. Eng., A 323 (2002) 218-225.
DOI: 10.1016/s0921-5093(01)01351-x
Google Scholar
[18]
T. Nagase, Y. Umakoshi, N. Sumida, Formation of nanocrystalline structure during electron irradiation induced crystallization in amorphous Fe-Zr-B alloys, Sci. Tech. Adv. Mater., 3 (2002) 119-128.
DOI: 10.1016/s1468-6996(02)00013-x
Google Scholar
[19]
T. Nagase, Y. Umakoshi, Effect of electron irradiation on nano-crystallization in Zr66.7Cu33.3 and Zr65.0Al7.5Cu27.5 amorphous alloys, Mater. Sci. Eng., A 343 (2003) 13-21.
DOI: 10.1016/s0921-5093(02)00326-x
Google Scholar
[20]
T. Nagase, Y. Umakoshi, Effect of irradiation temperature on the electron irradiation induced nanocrystallization behavior in Fe88.0Zr9.0B3.0 amorphous alloy, Mater. Sci. Eng., A 347 (2003) 136-144.
DOI: 10.1016/s0921-5093(02)00558-0
Google Scholar
[21]
T. Nagase, Y. Umakoshi, Electron irradiation induced crystallization behavior in Zr66.7Cu33.3 and Zr65.0Al7.5Cu27.5 amorphous alloys, Mater. Sci. Eng., A 352 (2003) 251-260.
DOI: 10.1016/s0921-5093(02)00896-1
Google Scholar
[22]
T. Nagase, Y. Umakoshi, Phase stability of amorphous and crystalline phases in melt-spun Zr66.7Cu33.3 alloy under electron irradiation, Scripta Mater., 48 (2003) 1237-1242.
DOI: 10.1016/s1359-6462(03)00056-3
Google Scholar
[23]
T. Nagase, Y. Umakoshi, Thermal stability and electron irradiation effect on Zr-based amorphous alloys, J. Appl. Phys., 93 (2003) 912-918.
DOI: 10.1063/1.1529073
Google Scholar
[24]
A. Nino, T. Nagase, Y. Umakoshi, Electron irradiation induced nano-crystallization in Fe77Nd4.5B18.5 metallic glass, Mater. Trans., 46 (2005) 1814-1819.
DOI: 10.2320/matertrans.46.1814
Google Scholar
[25]
W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Electron irradiation-induced nanocrystallization of amorphous Fe85B15 alloy: Evidence for athermal nature, Acta Mater., 57 (2009) 1300-1307.
DOI: 10.1016/j.actamat.2008.11.009
Google Scholar
[26]
T. Nagase, Y. Umakoshi, Temperature dependence in density fluctuation induced crystallization in metallic glass by MeV electron irradiation, Intermetallics, 18 (2010) 1803-1808.
DOI: 10.1016/j.intermet.2010.02.044
Google Scholar
[27]
T. Nagase, T. Sanda, A. Nino, W. Qin, H. Yasuda, H. Mori, Y. Umakoshi, J.A. Szpunar, MeV electron irradiation induced crystallization in metallic glasses: Atomic structure, crystallization mechanism and stability of an amorphous phase under the irradiation, J. of Non-Cryst. Solids, 358 (2012) 502-518.
DOI: 10.1016/j.jnoncrysol.2011.11.010
Google Scholar
[28]
K. Shimizu, M. Nishijima, A. Takeuchi, T. Nagase, H. Yasuda, A. Makino, Dynamic Observation of FeSiBPCu Alloys for Crystallization via MeV Electron Irradiation, J. Japan Inst. Metals, 78 (2014) 364-368.
DOI: 10.2320/jinstmet.j2014027
Google Scholar
[29]
T. Nagase, A. Takeuchi, K. Amiya, T. Egami, Solid State Amorphization of Metastable Al0.5TiZrPdCuNi High Entropy Alloy Investigated by High Voltage Electron Microscopy, Mater. Chem. Phys., 210 (2018) 291-300.
DOI: 10.1016/j.matchemphys.2017.07.071
Google Scholar
[30]
A. Takeuchi, J. Wang, N. Chen, W. Zhang, Y. Yokoyama, K. Yubuta, S. Zhu, Al0.5TiZrPdCuNi High-Entropy (H-E) Alloy Developed through Ti20Zr20Pd20Cu20Ni20 H-E Glassy Alloy Comprising Inter-Transition Metals, Mater. Trans., 54 (2013) 776-782.
DOI: 10.2320/matertrans.m2012370
Google Scholar
[31]
T. Nagase, S. Anada, P. D. Rack, J. H. Noh, H. Yasuda, H. Mori, T. Egami, "Electron-irradiation-induced structural change in Zr-Hf-Nb alloy, Intermetallics, 26 (2012) 122-130.
DOI: 10.1016/j.intermet.2012.02.015
Google Scholar
[32]
T. Nagase, S. Anada, P. D. Rack, J. H. Noh, H. Yasuda, H. Mori, T. Egami, MeV electron-irradiation-induced structural change in the bcc phase of Zr-Hf-Nb alloy with an approximately equiatomic ratio, Intermetallics, 38 (2013) 70-79.
DOI: 10.1016/j.intermet.2013.02.009
Google Scholar
[33]
T. Nagase, P. D. Rack, J. H. Noh, T. Egami, In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) induced under fast electron irradiation by high voltage electron microscopy (HVEM), Intermetallics, 59 (2015) 32-42.
DOI: 10.1016/j.intermet.2014.12.007
Google Scholar
[34]
Mo-Rigen He, S. Wang, K. Jin, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, I.M. Robertson, Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation, Scripta Mater., 125 (2016) 5-9.
DOI: 10.1016/j.scriptamat.2016.07.023
Google Scholar
[35]
Mo-Rigen He, S. Wang, S. Shi, K. Jin, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, I.M. Robertson, Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys, Acta Mater., 126 (2017) 182-193.
DOI: 10.1016/j.actamat.2016.12.046
Google Scholar
[36]
B.S. Murty, J.-W. Yeh, S. Ranganathan, High-Entropy Alloys, first ed., Elsevier, (2014) 1-218. ISBN 9780128005262.
Google Scholar
[37]
M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys, Fundamentals and Applications, first ed., Springer, (2016) 1-512., ISBN 9783319270135.
Google Scholar
[38]
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liew, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 10 (2008) 534-538.
DOI: 10.1002/adem.200700240
Google Scholar
[39]
Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, M.C. Gao, Guidelines in predicting phase formation of high-entropy alloys, MRS Commun., 4 (2014) 57-62.
DOI: 10.1557/mrc.2014.11
Google Scholar
[40]
X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, and Lithium, JOM 66 (2014) 2009-2020.
DOI: 10.1007/s11837-014-1059-z
Google Scholar
[41]
R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang, P. K. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 18 (2016) 333.
DOI: 10.3390/e18090333
Google Scholar
[42]
A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 46 (2005) 2817-2829.
DOI: 10.2320/matertrans.46.2817
Google Scholar