[1]
M. E. Villafuerte-Castrejon, J. A. Gracia, E. Cisneros, R. Valenzuela, and A.R. West, New rutile solid solutions Ti1-4xLixM3xO2: M = Nb, Ta, Sb, J. Brit. Ceram. Soc., 83 (1984) 143–145.
DOI: 10.1016/0025-5408(84)90133-8
Google Scholar
[2]
L. Farber, I. Levin, A. Borisevich, I. E. Grey, R.S. Roth, and P.K. Davies, Structural study of Li1+x-yNb1-x-3yTix+4yO3 solid solutions, J. Solid State Chem., 166 (2002) 81–90.
DOI: 10.1006/jssc.2002.9563
Google Scholar
[3]
A. Y. Borisevich, and P. K. Davies, Synthesis and dielectric properties of Li1+x-yTa1-x-3yTix+4yO3 M-phase solid solutions, J. Am. Ceram. Soc., 85 (10) (2002) 2487–2491.
DOI: 10.1111/j.1151-2916.2002.tb00485.x
Google Scholar
[4]
H. Nakano, S. Suehiro, S. Furuya, and K. Fukuda, Microstructural comparison between Nb- and Ta-systems in Li1+x-yM1-x-3yTix+4yO3 (M = Nb5+, Ta5+) solid solution with superstructure, J. Alloys Compds., 618 (2015) 504–507.
DOI: 10.1016/j.jallcom.2014.08.172
Google Scholar
[5]
A.Y. Borisevich and P.K. Davies, Microwave dielectric properties of Li1+x-yM1-x-3yTix+4yO3 (M = Nb5+, Ta5+) solid solutions, J. Eur. Ceram. Soc., 21 (10-11) (2001) 1719–1722.
DOI: 10.1016/s0955-2219(01)00101-7
Google Scholar
[6]
A.Y. Borisevich and P.K. Davies, Synthesis and dielectric properties of Li1+x-yTa1-x-3yTix+4yO3 M-phase solid solutions, J. Am. Ceram. Soc. 85 (10) (2002) 2487-91.
DOI: 10.1111/j.1151-2916.2002.tb00485.x
Google Scholar
[7]
H. Nakano and S. Suehiro, Synthesis and structural analysis of Li1+x-yM1-x-3yTix+4yO3 (M = Nb5+, Ta5+) solid solutions with superstructure, J. Soc. of Powder Tech. Jpn., 51 (3) (2014) 136-141 [in Japanese].
DOI: 10.4164/sptj.51.136
Google Scholar
[8]
H. Naknao, K. Ozono, T. Saji, S. Miyake, and H. Hayashi, Rapid synthesis of Eu3+-doped LNT (Li–Nb–Ti–O) phosphor by millimeter-wave heating, Opt. Mater. 35 (11) (2013) 2045–(2048).
DOI: 10.1016/j.optmat.2012.09.021
Google Scholar
[9]
H. Nakano, K. Ozono, H. Hayashi, and S. Fujihara, Synthesis and luminescent properties of a new Eu3+-doped Li1+x(Ta1-zNbz)1-xTixO3 red phosphor, J. Am. Ceram. Soc., 95 (9) (2012) 2795–2797.
DOI: 10.1111/j.1551-2916.2012.05372.x
Google Scholar
[10]
H. Nakano, S. Suehiro, S. Furuya, H. Hayashi, and S. Fujihara, Synthesis of new RE3+ doped Li1+xTa1−xTixO3 (RE: Eu, Sm, Er, Tm, and Dy) phosphors with various emission colors, Materials, 6 (7) (2013) 2768-2776.
DOI: 10.3390/ma6072768
Google Scholar
[11]
H. Nakano, S. Furuya, K. Fukuda, and S. Yamada, Synthesis and luminescence enhancement of Eu3+, Sm3+ co-doped Li1.11Ta0.89Ti0.11O3 phosphor, Mater. Res. Bull., 60 (2014) 766-770.
DOI: 10.1016/j.materresbull.2014.09.059
Google Scholar
[12]
H. Ichioka, S. Furuya, T. Asaka, H. Nakano, and K. Fukuda, Crystal structures and enhancement of photoluminescence intensities by effective doping for lithium tantalate phosphors, Powder Diffraction 30 (4) (2015) 326-332.
DOI: 10.1017/s0885715615000688
Google Scholar
[13]
G.W. Brindley, The effect of grain or partic;e size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by x-ray methods, Philos. Mag., 36 (1945) 347-369.
DOI: 10.1080/14786444508520918
Google Scholar
[14]
H. Nakano, Unique crystal structures and their applications of materials for Li1+x-yM1-x-3yTix+4yO3 (M = Nb or Ta, 0.07 ≤ x ≤ 0.33, 0 ≤ y ≤ 0.175), Advanced Powder Technology, 30 (2019) 2003-2013.
DOI: 10.1016/j.apt.2019.04.034
Google Scholar