[1]
B. Schoinochoritis, D. Chantzis, K. Salonitis, Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review, Proc. Inst. Mech. Eng. B 231 (2015) 1-22.
DOI: 10.1177/0954405414567522
Google Scholar
[2]
W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals, Appl. Phys. Rev. 2 (2015).
DOI: 10.1201/9781315119106-26
Google Scholar
[3]
M. Markl and C. Körner, Multiscale modeling of powder bed–based additive manufacturing Ann. Rev. Mater. Res. 46 (2016) 93-123.
DOI: 10.1146/annurev-matsci-070115-032158
Google Scholar
[4]
D.R. Gunasegaram, A.B. Murphy, S.J. Cummins, V. Lemiale, G.W. Delaney, V. Nguyen, Y. Feng, in: M. Baker (Ed.), TMS 2017 146th Annual Meeting & Exhibition Annual Meeting Supplemental Proceedings, The Minerals, Metals & Materials Series, 2017, pp.91-102.
DOI: 10.1007/978-3-319-51493-2_10
Google Scholar
[5]
P.A. Cundall and O.D.L. Strack, A Discrete Numerical Model for Granular Assemblies Geotechnique, 29 (1979) 47-65.
DOI: 10.1680/geot.1979.29.1.47
Google Scholar
[6]
P.W. Cleary, Large scale industrial DEM modelling, Engineering Computations, 21 (2004) 169-204.
DOI: 10.1108/02644400410519730
Google Scholar
[7]
G.W. Delaney, P.W. Cleary, M. Hilden, and R. D. Morrison, Testing the Validity of the Spherical DEM Model in Simulating Real Granular Screening Processes, Chemical Engineering Science, 68 (2012) 215-226.
DOI: 10.1016/j.ces.2011.09.029
Google Scholar
[8]
G.W. Delaney, P. W. Cleary, R. D. Morrison, S. Cummins and B. Loveday, Predicting Breakage and the Evolution of Rock Size and Shape Distributions in Ag and SAG Mills Using DEM, Minerals Engineering, 50–51 (2013) 132-139.
DOI: 10.1016/j.mineng.2013.01.007
Google Scholar
[9]
G.W. Delaney, R. D. Morrison, M. D. Sinnott, S. Cummins and P. W. Cleary, DEM Modelling of Non-Spherical Particle Breakage and Flow in an Industrial Scale Cone Crusher, Minerals Engineering, 74 (2015) 112-122.
DOI: 10.1016/j.mineng.2015.01.013
Google Scholar
[10]
E.J.R Parteli and T. Pöschel, Particle-Based Simulation of Powder Application in Additive Manufacturing, Powder Technology 288 (2016) 96-102.
DOI: 10.1016/j.powtec.2015.10.035
Google Scholar
[11]
G.W. Delaney and P. W. Cleary, The Packing Properties of Superellipsoids, Europhysics Letters, 89 (2010) 34002.
DOI: 10.1209/0295-5075/89/34002
Google Scholar
[12]
FLOW-3D: Version 11.1.1.3, Flow Science Inc, Santa Fe, NM, USA.
Google Scholar
[13]
P.W. Cleary, M. Prakash, J. Ha, N. Stokes, C. Scott, Smooth particle hydrodynamics: Status and future potential, Prog. Comput. Fluid Dynam. 7 (2007) 70-90.
DOI: 10.1504/pcfd.2007.013000
Google Scholar
[14]
P.W. Cleary, J. Ha, M. Prakash, T. Nguyen, Short shots and industrial cases studies: understanding fluid flow and solidification in high pressure die casting, Appl. Math. Model. 34 (2010) 2018-2033.
DOI: 10.1016/j.apm.2009.10.015
Google Scholar
[15]
M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes, Acta Mater. 114 (2016) 33-42.
DOI: 10.1016/j.actamat.2016.05.017
Google Scholar
[16]
M.C. Charles, R. Pederson and L.E. Lindgren, A model for Ti–6Al–4V microstructure evolution for arbitrary temperature changes, Modelling Simul. Mater. Sci. Eng. 20 (2012) 055006.
DOI: 10.1088/0965-0393/20/5/055006
Google Scholar
[17]
D.P. Koistinen and R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall., 7 (1959) 59-60.
DOI: 10.1016/0001-6160(59)90170-1
Google Scholar
[18]
M. Avrami, Kinetics of Phase Change. I General Theory, J. Chem. Phys. 7 (1939) 1103-1112.
Google Scholar
[19]
W. Johnson and R. Mehl, Reaction kinetics in processes of nucleation and growth, Trans AIME 135 (1939) 416.
Google Scholar
[20]
A. Kolmogorov, (1937). A statistical theory for the recrystallization of metals, Akad. Nauk SSSR, Izv., Ser. Matem. 1 (1937) 355.
Google Scholar
[21]
N. Provatas and K. Elder, Phase field methods in Material Science and Engineering, Wiley-VCH, Weinheim, 2010 pp.1-7.
Google Scholar
[22]
N. Wang and L.Q. Chen, Phase field methods, in Multiscale Paradigms in Integrated Computational Materials Science and Engineering, ed. P.A Deymier et al. (Springer International Publishing, Switzerland, 2016) pp.195-217.
DOI: 10.1007/978-3-319-24529-4_4
Google Scholar
[23]
J. Ding, P. Colegrove, J. Mehnen, S. Williams, F. Wang and P. Sequeira Almeida, A computationally efficient finite element model of wire and arc additive manufacture, International Journal of Advanced Manufacturing Technology, 70 (2014) 227-236.
DOI: 10.1007/s00170-013-5261-x
Google Scholar
[24]
E.R. Denlinger, J. Irwin and P. Michaleris, Thermomechanical modeling of additive manufacturing large parts, Journal of Manufacturing Science and Engineering, 136 (2014) 1-8.
DOI: 10.1115/1.4028669
Google Scholar
[25]
V. Nguyen, S. Lathabai, Y. Feng, A. Miller, J.E. Barnes, G. Coleman and A.M. Helvey, Further development of a predictive tool for managing distortion in electron beam direct manufacturing. Presented at the 25th AeroMat Conference and Exposition, Orlando, Florida, 16-19 June (2014).
Google Scholar
[26]
L. Parry, I.A. Ashcroft and R.D. Wildman, Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation, Additive Manufacturing, 12 (2016) 1–15.
DOI: 10.1016/j.addma.2016.05.014
Google Scholar
[27]
G.R. Johnson and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: 7th International Symposium on Ballistics, The Hague, the Netherland (1983), 541-547.
Google Scholar