[1]
G. Lütjering, J.C. Williams, Titanium. Engineering materials, processes, Berlin: Springer (2007) 1-39.
Google Scholar
[2]
V.N. Moiseyev, Titanium Alloys. Russian Aircraft and Aerospace Applications, CRC Press., New York, (2005).
Google Scholar
[3]
A.A. Ilyin, B.A. Kolachev, I.S. Polkin, Titanium Alloys. Composition, Structure, Properties. Reference Book, Moscow: VILS-MATI, 2009 (In Russian).
Google Scholar
[4]
A.P. Mouritz, Introduction to Aerospace Materials, Woodhead, Publishing in Materials, (2012).
Google Scholar
[5]
M. Peters, C. Leyens, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinkeim, Germany, (2003).
Google Scholar
[6]
E.V. Naydenkin, I. V. Ratochka, I. P. Mishin, O. N. Lykova Evolution of the structural-phase state of a VT22 titanium alloy during radial shear rolling and subsequent aging, Russian physics journal, 58 (2015) 1068-1073.
DOI: 10.1007/s11182-015-0613-7
Google Scholar
[7]
I.V. Ratochka, I.P. Mishin, O.N. Lykova, E.V. Naydenkin, N.V. Varlamova, Structural evolution and mechanical properties of a VT22 titanium alloy under high-temperature deformation, Russian physics journal, 59 (2016) 397–402.
DOI: 10.1007/s11182-016-0786-8
Google Scholar
[8]
E.V. Naydenkin, I.P. Mishin, I.V. Ratochka, O.N. Lykova, O.V. Zabudchenko. The effect of alpha-case formation on plastic deformation and fracture of near β titanium alloy, Materials Science & Engineering A 769 (2020) 138495.
DOI: 10.1016/j.msea.2019.138495
Google Scholar
[9]
Akopyan T.K., Aleshchenko A.S., Belov N.A., Galkin S.P. Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type, The Physics of Metals and Metallography, 119 (2018) 241-250.
DOI: 10.1134/s0031918x18010039
Google Scholar
[10]
V. Sheremetyev, A. Kudryashova, V. Cheverikin, A. Korotitskiy, S. Galkin, S. Prokoshkin, V. Brailovski Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr14Nb (at. %) alloy for bone implants: Microstructure, texture and functional properties, Journal of Alloys and Compounds 800 (2019) 320-326.
DOI: 10.1016/j.jallcom.2019.06.041
Google Scholar
[11]
Ivasishin O.M., Markovsky P.E., Matviychuk Yu.V., Semiatin S.L., Ward C.H., Fox C. A comparative study of the mechanical properties of high-strength β-titanium alloys, J. alloys and comp. 457 (2008) 296-309.
DOI: 10.1016/j.jallcom.2007.03.070
Google Scholar
[12]
Zherebtsov S.V., Murzinova M.A., Klimova M.V., Salishchev G.A., Popov A.A., Semiatin S.L. Microstructure evolution during warm working of Ti-5Al-5Mo-5V-1Cr-1Fe at 600 and 800oC, Materials Science and Engineering A. 563 (2013) 168-176.
DOI: 10.1016/j.msea.2012.11.042
Google Scholar
[13]
Ternary alloy systems. Phase diagrams, crystallographic and thermodynamic data, Ed. in Chief: W. Martienssen. G. Effenberg, S. Ilyenko (eds.), Springer, Berlin-Heidelberg (2008).
Google Scholar
[14]
Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, A.P. Zhilyaev, E.F. Dudarev, K.V. Ivanov, M.B. Ivanov, O.A. Kashin, E.V. Naydenkin. Grain boundary diffusion and properties of nanostructured materials. Cambridge Int. Sci. Publ. (2007).
DOI: 10.1016/s1359-6462(00)00699-0
Google Scholar