Effect of Cold Reduction Rate on Ferrite Recrystallization Behavior during Annealing in Low-Carbon Steel with Different Initial Microstructures

Article Preview

Abstract:

We investigate the effect of the cold reduction rate on ferrite recrystallization behavior during the annealing of low-carbon steel with different initial microstructures. Three types of hot-rolled sheet specimens are prepared: specimens P, B, and M, which consist of ferrite and pearlite, bainite, and martensite, respectively. To evaluate the effect of the cold reduction rate on ferrite recrystallization behavior, hot-rolled sheet specimens are cold-rolled at cold reduction rates of 40% and 67%. The cold-rolled sheet specimens are heated to the target temperature, and then water-quenched to room temperature. Irrespective of the initial microstructures, the ferrite recrystallization is accelerated by increasing the cold reduction rate. In addition, the dislocation densities of specimens P and B increase at the larger cold reduction rate, which accelerates ferrite recrystallization in these specimens. In the case of specimen M, the dislocation arrangement parameter remarkably decreases at the larger cold reduction rate, whereas the dislocation density hardly changes. Thus, we conclude that the accelerated ferrite recrystallization at the larger cold reduction rate for specimen M can be mainly attributed to an increase in the amount of interactions between dislocations in the specimen.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1045-1050

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Takahashi, Sheet steel technology for the last 100 years: Progress in sheet steels in hand with the automotive industry, Tetsu-to-Hagané 100 (2014) 82-93.

DOI: 10.2355/tetsutohagane.100.82

Google Scholar

[2] Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D.A. Molodov, Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel, Mater. Charact. 112 (2016) 180-187.

DOI: 10.1016/j.matchar.2015.12.021

Google Scholar

[3] Z. Liu, R. O. Olivares, Y. Lei, C. I. Garcia, G. Wang, Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steels, J. Alloys Compd. 679 (2016) 293-301.

DOI: 10.1016/j.jallcom.2016.04.057

Google Scholar

[4] M. Janošec, I. Schindler, J. Palát, L. Čížek, V. Vodárek, E. Místecký, M. Růžička, L. A. Dobrzański, S. Rusz, P. Suchánek, Properties of a Nb-V-Ti microalloyed steel influenced by cold rolling and annealing, J. Achiev. Mater. Manuf. Eng., 20 (2007) 251-254.

DOI: 10.4028/www.scientific.net/msf.567-568.345

Google Scholar

[5] W. Ye, R. L. Gall, G. Saindrenan, A study of the recrystallization of an IF steel by kinetics models, Mater. Sci. Eng. A, 332 (2002) 41-46.

Google Scholar

[6] T. Ogawa, H. Dannoshita, K. Maruoka, K. Ushioda, Microstructural evolution during cold rolling and subsequent annealing in low-carbon steel with different initial microstructures, J. Mater. Eng. Perform. 26 (2017) 3821-3830.

DOI: 10.1007/s11665-017-2849-6

Google Scholar

[7] H. Dannoshita, T. Ogawa, K. Maruoka, K. Ushioda, Effect of initial microstructures on austenite formation behavior during intercritical annealing in low-carbon steel, Mater. Trans. 50 (2019) 165-168.

DOI: 10.2320/matertrans.m2018298

Google Scholar

[8] T. Ogawa, H. Dannoshita, Y. Adachi, K. Ushioda, Effect of initial microstructures prior to cold-rolling and intercritical annealing on ferrite recrystallization and ferrite-to-austenite phase transformation in Nb bearing low-carbon steels, J. Phys.: Conf. Ser. 1270 (2019) 012016.

DOI: 10.1088/1742-6596/1270/1/012016

Google Scholar

[9] T. Ungár, A. Borbély, The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis, Appl. Phys. Lett., 69 (1996) 3173-3175.

DOI: 10.1063/1.117951

Google Scholar

[10] T. Ungár, S. Ott, P. G. Sanders, A. Borbély, J. R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Mater., 46 (1998) 3693-3699.

DOI: 10.1016/s1359-6454(98)00001-9

Google Scholar

[11] H. S. Zurob, C. R. Hutchinson, Y. Brechet, G. Purdy, Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization, Acta Mater., 50 (2002) 3075-3092.

DOI: 10.1016/s1359-6454(02)00097-6

Google Scholar

[12] H. Yaguchi, T. Tsuchida, Y. Matsushima, S. Abe, K. Iwasaki and A. Inada, Effect of microstructures on the fatigue behavior of V-added ferrite-pearlite type microalloyed steels, Kobe Steel Engineering Reports, 50 (2000) 53-56.

Google Scholar

[13] N. Narasaiah and K. K. Ray, Small crack formation in a low carbon steel with banded ferrite-pearlite structure, Mater. Sci. Eng. A, 392 (2005) 269-277.

DOI: 10.1016/j.msea.2004.09.058

Google Scholar

[14] M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, Phys. Status Solidi, 2 (1970) 359-370.

DOI: 10.1002/pssa.19700020224

Google Scholar

[15] Y. Tomota, S. Sato, S. Harjo, Recent progress of line-profile analyses for neutron or X-ray Diffraction, Tetsu-to-Hagané 103 (2017) 73-85.

DOI: 10.2355/tetsutohagane.tetsu-2016-085

Google Scholar

[16] S. Takaki, S. Iizuka, K. Tomimura and Y. Tokunaga, Influence of cold working on recovery and recrystallization of lath martensite in 0.2%C steel, J. Jpn. Inst. Met. Mater., 55 (1991) 1151-1158.

DOI: 10.2320/matertrans1989.33.577

Google Scholar

[17] M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, I. Tamura, Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels, Metall. Trans. A, 13A (1982) 1379-1388.

DOI: 10.1007/bf02642875

Google Scholar