[1]
M. Takahashi, Sheet steel technology for the last 100 years: Progress in sheet steels in hand with the automotive industry, Tetsu-to-Hagané 100 (2014) 82-93.
DOI: 10.2355/tetsutohagane.100.82
Google Scholar
[2]
Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D.A. Molodov, Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel, Mater. Charact. 112 (2016) 180-187.
DOI: 10.1016/j.matchar.2015.12.021
Google Scholar
[3]
Z. Liu, R. O. Olivares, Y. Lei, C. I. Garcia, G. Wang, Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steels, J. Alloys Compd. 679 (2016) 293-301.
DOI: 10.1016/j.jallcom.2016.04.057
Google Scholar
[4]
M. Janošec, I. Schindler, J. Palát, L. Čížek, V. Vodárek, E. Místecký, M. Růžička, L. A. Dobrzański, S. Rusz, P. Suchánek, Properties of a Nb-V-Ti microalloyed steel influenced by cold rolling and annealing, J. Achiev. Mater. Manuf. Eng., 20 (2007) 251-254.
DOI: 10.4028/www.scientific.net/msf.567-568.345
Google Scholar
[5]
W. Ye, R. L. Gall, G. Saindrenan, A study of the recrystallization of an IF steel by kinetics models, Mater. Sci. Eng. A, 332 (2002) 41-46.
Google Scholar
[6]
T. Ogawa, H. Dannoshita, K. Maruoka, K. Ushioda, Microstructural evolution during cold rolling and subsequent annealing in low-carbon steel with different initial microstructures, J. Mater. Eng. Perform. 26 (2017) 3821-3830.
DOI: 10.1007/s11665-017-2849-6
Google Scholar
[7]
H. Dannoshita, T. Ogawa, K. Maruoka, K. Ushioda, Effect of initial microstructures on austenite formation behavior during intercritical annealing in low-carbon steel, Mater. Trans. 50 (2019) 165-168.
DOI: 10.2320/matertrans.m2018298
Google Scholar
[8]
T. Ogawa, H. Dannoshita, Y. Adachi, K. Ushioda, Effect of initial microstructures prior to cold-rolling and intercritical annealing on ferrite recrystallization and ferrite-to-austenite phase transformation in Nb bearing low-carbon steels, J. Phys.: Conf. Ser. 1270 (2019) 012016.
DOI: 10.1088/1742-6596/1270/1/012016
Google Scholar
[9]
T. Ungár, A. Borbély, The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis, Appl. Phys. Lett., 69 (1996) 3173-3175.
DOI: 10.1063/1.117951
Google Scholar
[10]
T. Ungár, S. Ott, P. G. Sanders, A. Borbély, J. R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Mater., 46 (1998) 3693-3699.
DOI: 10.1016/s1359-6454(98)00001-9
Google Scholar
[11]
H. S. Zurob, C. R. Hutchinson, Y. Brechet, G. Purdy, Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization, Acta Mater., 50 (2002) 3075-3092.
DOI: 10.1016/s1359-6454(02)00097-6
Google Scholar
[12]
H. Yaguchi, T. Tsuchida, Y. Matsushima, S. Abe, K. Iwasaki and A. Inada, Effect of microstructures on the fatigue behavior of V-added ferrite-pearlite type microalloyed steels, Kobe Steel Engineering Reports, 50 (2000) 53-56.
Google Scholar
[13]
N. Narasaiah and K. K. Ray, Small crack formation in a low carbon steel with banded ferrite-pearlite structure, Mater. Sci. Eng. A, 392 (2005) 269-277.
DOI: 10.1016/j.msea.2004.09.058
Google Scholar
[14]
M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, Phys. Status Solidi, 2 (1970) 359-370.
DOI: 10.1002/pssa.19700020224
Google Scholar
[15]
Y. Tomota, S. Sato, S. Harjo, Recent progress of line-profile analyses for neutron or X-ray Diffraction, Tetsu-to-Hagané 103 (2017) 73-85.
DOI: 10.2355/tetsutohagane.tetsu-2016-085
Google Scholar
[16]
S. Takaki, S. Iizuka, K. Tomimura and Y. Tokunaga, Influence of cold working on recovery and recrystallization of lath martensite in 0.2%C steel, J. Jpn. Inst. Met. Mater., 55 (1991) 1151-1158.
DOI: 10.2320/matertrans1989.33.577
Google Scholar
[17]
M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, I. Tamura, Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels, Metall. Trans. A, 13A (1982) 1379-1388.
DOI: 10.1007/bf02642875
Google Scholar