Numerical Analysis of Solidification Behavior during Laser Welding Nickel-Based Single-Crystal Superalloy Part: II Crystallography-Dependent Supersaturation of Liquid Aluminum

Article Preview

Abstract:

The thermal metallurgical modeling of liquid aluminum supersaturation was further developed through couple of heat transfer model, dendrite selection model, multicomponent dendrite growth model and nonequilibrium solidification model during three-dimensional nickel-based single-crystal superalloy weld pool solidification. The welding configuration plays more important role in supersaturation of liquid aluminum, morphology instability and nonequilibrium partition behavior. The bimodal distribution of liquid aluminum supersaturation along the solid/liquid interface is crystallographically symmetrical about the weld pool centerline in (001) and [100] welding configuration. The distribution of liquid aluminum supersaturation along the solid/liquid interface is crystallographically asymmetrical throughout the weld pool in (001) and [110] welding configuration. Optimum low heat input (low laser power and high welding speed) with (001) and [100] welding configuration is more favored to predominantly promote epitaxial [001] dendrite growth to reduce the metallurgical factors for solidification cracking than that of high heat input (high laser power and slow welding speed) with (001) and [110] welding configuration. The lower the heat input is used, the lower supersaturation of liquid aluminum is imposed, and the smaller size of vulnerable [100] dendrite growth region is incurred to ameliorate solidification cracking susceptibility and vice versa. The overall supersaturation of liquid aluminum in (001) and [100] welding configuration is beneficially smaller than that of (001) and [110] welding configuration regardless of heat input, and is not thermodynamically relieved by gamma prime γˊ phase. (001) and [110] welding configuration is detrimental to weldability and deteriorates the solidification cracking susceptibility because of unfavorable crystallographic orientations and alloying aluminum enrichment. The mechanism of asymmetrical solidification cracking because of crystallography-dependent supersaturation of liquid aluminum is proposed. The eligible solidification cracking location is particularly confined in [100] dendrite growth region. Moreover, the theoretical predictions agree well with the experiment results. The useful modeling is also applicable to other single-crystal superalloys with similar metallurgical properties for laser welding or laser cladding. The thorough numerical analyses facilitate the understanding of weld pool solidification behavior, microstructure development and solidification cracking phenomena in the primary γ phase, and thereby optimize the welding conditions (laser power, welding speed and welding configuration) for successful crack-free laser welding.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1018)

Pages:

13-22

Citation:

Online since:

January 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Weiping Liu, J.N. Dupont. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals, Mathematical modeling of single-crystal growth in a melt pool (Part I), Acta Materialia,52(2004),4833-4847.

DOI: 10.1016/s1359-6454(04)00390-8

Google Scholar

[2] Weiping Liu, J.N. Dupont. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals, Mathematical modeling of single-crystal growth in a melt pool (Part II), Acta Materialia, 53(2005), 1545-1558.

DOI: 10.1016/j.actamat.2004.12.007

Google Scholar

[3] D.Dye, O.Hunziker, R.C. Reed. Numerical analysis of the weldability of superalloys, Acta Mater., 49(2001),683-697.

DOI: 10.1016/s1359-6454(00)00361-x

Google Scholar

[4] O.Hunziker, D.Dye, R.C. Reed. On the formation of a centerline grain boundary during fusion welding, Acta Mater., 48(2000),4191-4201.

DOI: 10.1016/s1359-6454(00)00273-1

Google Scholar

[5] T.D. Anderson, J.N. Dupont, T.Debroy. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling, Acta Materialia,58(2010), 1441-1454.

DOI: 10.1016/j.actamat.2009.10.051

Google Scholar

[6] T.D. Anderson, J.N. Dupont, T.Debroy. Stray grain formation in welds of single-crystal Ni-based superalloy CMSX-4, Metallurgical and Materials Transactions A, Vol.41A (2010), 181-193.

DOI: 10.1007/s11661-009-0078-9

Google Scholar

[7] M. Rappaz, S.A. David, J.M. Vitek, L.A. Boatner. Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds, Metallurgical Transactions A, Vol. 20A (1989), 1125-1138.

DOI: 10.1007/bf02650147

Google Scholar

[8] M.Rappaz, S.A. David, J.M. Vitek, L.A. Boatner. Analysis of solidification microstructure in Fe-Ni-Cr single-crystal welds, Metallurgical Transactions A, Vol.21A(1990),1767-1782.

DOI: 10.1007/bf02672593

Google Scholar

[9] M.Rappaz, Ch.A. Gandin. Probabilistic modeling of microstructure formation in solidification processes, Acta Metall. Mater., Vol.41(2)(1993),345-360.

DOI: 10.1016/0956-7151(93)90065-z

Google Scholar

[10] J.M. Vitek. The effect of welding conditions on stray grain formation in single crystal welds-theoretical analysis, Acta Materialia, 53(2005),53-67.

DOI: 10.1016/j.actamat.2004.08.039

Google Scholar

[11] S.S. Babu, M.K. Miller, J.M. Vitek, S.A. David. Characterization of the microstructure evolution in a nickel-based superalloy during continuous cooling conditions, Acta Mater., 49(2001), 4149- 4160.

DOI: 10.1016/s1359-6454(01)00314-7

Google Scholar

[12] J.W. Park, S.S. Babu, J.M. Vitek, E.A. Kenik, S.A. David. Stray grain formation in single-crystal Ni-based superalloy welds, Journal of Applied Physics, Vol.94 (6) (2003), 4203-4209.

DOI: 10.1063/1.1602950

Google Scholar

[13] Y.L. Wang, O.A. Ojo, R.G. Ding, M.C. Chaturvedi. Weld metal cracking in laser beam welded single crystal nickel-based superalloy, Materials Sciences and Technology, Vol.25(1) (2009), 68-75.

DOI: 10.1179/174328407x185938

Google Scholar

[14] R.G. Ding, O.A. Ojo, M.C. Chaturvedi. Fusion zone microstructure of laser beam weld directionally solidified Ni3Al-based alloy IC6, Scripta Materialia, 54(2006),859-864.

DOI: 10.1016/j.scriptamat.2005.11.010

Google Scholar

[15] N.L. Richards, M.C. Chaturvedi. Effect of minor elements on weldability of nickel-based superalloys, International Materials Reviews, Vol.45(3)(2000),109-129.

DOI: 10.1179/095066000101528331

Google Scholar

[16] R.J. Moat, A.J. Pinkerton, L.Li, P.J. Withers, M.Preuss. Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy, Acta Materialia, 57(2009), 1220-1229.

DOI: 10.1016/j.actamat.2008.11.004

Google Scholar

[17] N.Wang, S.Mokadem, M.Rappaz,W.Kurz. Solidification cracking of superalloy single- and bi-crystals, Acta Materialia,52(2004),3173-3182.

DOI: 10.1016/j.actamat.2004.03.047

Google Scholar

[18] M.Gaumann, C.Bezencon, P. Canalis, W. Kurz. Single-crystal laser deposition on superalloy: processing-microstructure maps, Acta Mater.,49(2001),1051-1062.

DOI: 10.1016/s1359-6454(00)00367-0

Google Scholar

[19] S.N. Tewari, M.Vijayakumar, J.E. Lee, P.A. Curreri. Solutal partition coefficients in nickel-based superalloy PWA-1480, Materials Science and Engineering A, 141(1991),1-2.

DOI: 10.1016/0921-5093(91)90713-w

Google Scholar

[20] A.Wagner, B.A. Shollock, M.Mclean. Grain structure development in directional solidification of nickel-based superalloys, Materials Science and Engineering A, 374(2004),270-279.

DOI: 10.1016/j.msea.2004.03.017

Google Scholar

[21] X.L. Yang, H.B. Dong, W. Wang, P.D. Lee. Microscale simulation of stray grain formation in investment cast turbine blades, Materials Science and Engineering A, 386(2004),129-139.

DOI: 10.1016/s0921-5093(04)00914-1

Google Scholar

[22] A. de Bussac, Ch. A Gandin. Prediction of a process window for investment casting of dendritic single crystals, Materials Science and Engineering A, 237(1997),35-42.

DOI: 10.1016/s0921-5093(97)00081-6

Google Scholar

[23] Edward H. Kottcamp. ASM Handbook, Volume 3, Alloy phase diagrams, ASM International, USA,1993,49-155.

Google Scholar

[24] Wu Qiong, Li Shusuo, Ma Yue, Gong Shengkai. First principles calculations of alloying element diffusion coefficient in Ni using the five-frequency model, Chin.Phys.B, Vol.21 (10) (2012), 1091021-1-7.

DOI: 10.1088/1674-1056/21/10/109102

Google Scholar

[25] J.M. Vitek, S.S. Babu, J.W. Park, S.A. David. Analysis of stray grain formation in single-crystal nickel-based superalloy welds, Proceeding of International Symposium on Superalloys,2004, 459-465.

DOI: 10.7449/2004/superalloys_2004_459_465

Google Scholar

[26] J.M. Vitek, S.A. David, S.S. Babu. Optimization of weld conditions and alloy composition for welding single-crystal nickel-based superalloys, Materials Science Form,Vol.539-543(2007), 3082-3087.

DOI: 10.4028/www.scientific.net/msf.539-543.3082

Google Scholar