Numerical Analysis of Aerospace Nickel-Based Single-Crystal Superalloy Weldability Part II: Nonequilibrium Solidification Behavior

Article Preview

Abstract:

The thermal metallurgical modeling by coupling of heat transfer model, dendrite selection model, columnar/equiaxed transition (CET) model and nonequilibrium solidification model was further developed to numerically analyze stray grain formation and solidification temperature range on the basis of three criteria of constitutional undercooling, marginal stability of planar front and minimum growth velocity during multicomponent nickel-based single-crystal superalloy weld pool solidification. It is indicated that the primary γ gamma phase microstructure development and solidification cracking susceptibility along the solid/liquid interface are symmetrically distributed throughout the weld pool in (001) and [100] welding configuration. The microstructure development and solidification cracking susceptibility along the solid/liquid interface are asymmetrically distributed in (001) and [110] welding configuration. Appropriate low heat input (low laser power and high welding speed) simultaneously minimizes stray grain formation, grain boundary misorientation and solidification temperature range in the vulnerable [100] dendrite growth region and beneficially maintains single-crystal nature of the material in the [001] epitaxial dendrite growth region to improve the cracking resistance, while high heat input (high laser power and low welding speed) increases the solidification cracking susceptibility to deteriorate weldability and weld integrity. The solidification temperature range in (001) and [110] welding configuration is detrimentally wider than that of (001) and [100] welding configuration due to crystallographic orientation of dendrite growth regardless of heat input. The mechanism of asymmetrical crystallography-dependant solidification cracking because of nonequilibrium solidification behavior is proposed. The elliptical and shallow weld pool shape is less susceptible to solidification cracking for successful crack-free laser welding. Moreover, the promising theoretical predictions agree well with the experiment results. The useful modeling is also applicable to other single-crystal superalloys with similar metallurgical properties during laser welding or laser cladding.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1018)

Pages:

33-41

Citation:

Online since:

January 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Weiping Liu, J.N. Dupont. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (Part I), Acta Materialia. 52(2004),4833-4847.

DOI: 10.1016/s1359-6454(04)00390-8

Google Scholar

[2] Weiping Liu, J.N. Dupont. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (Part II), Acta Materialia. 53(2005),1545-1558.

DOI: 10.1016/j.actamat.2004.12.007

Google Scholar

[3] D. Dye, O. Hunziker, R.C. Reed. Numerical analysis of the weldability of superalloys, Acta Mater. 49(2001), 683-697.

DOI: 10.1016/s1359-6454(00)00361-x

Google Scholar

[4] O.Hunziker, D.Dye, R.C. Reed. On the formation of a centerline grain boundary during fusion welding, Acta Mater. 48(2000),4191-4201.

DOI: 10.1016/s1359-6454(00)00273-1

Google Scholar

[5] T.D. Anderson, J.N. Dupont, T.Debroy. Origin of stray grain formation in single-crystal superalloy weld pool from heat transfer and fluid flow modeling, Acta Materialia. 58(2010), 1441-1454.

DOI: 10.1016/j.actamat.2009.10.051

Google Scholar

[6] T.D. Anderson, J.N. Dupont, T.Debroy. Stray grain formation in welds of single-crystal Ni-based superalloy CMSX-4, Metallurgical and Materials Transactions A. Vol.41A (2010), 181-193.

DOI: 10.1007/s11661-009-0078-9

Google Scholar

[7] M. Rappaz, S.A. David, J.M. Vitek, L.A. Boatner. Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds, Metallurgical Transactions A. Vol.21A(1990),1767-1782.

DOI: 10.1007/bf02672593

Google Scholar

[8] M.Rappaz, S.A. David, J.M. Vitek, L.A. Boatner. Development of microstructure in Fe-15Ni-15Cr single crystal electron beam welds, Metallurgical Transactions A. Vol.20A (1989), 1125-1138.

DOI: 10.1007/bf02650147

Google Scholar

[9] M.Rappaz, Ch.a. Gandin. Probabilistic modeling of microstructure formation in solidification processes, Acta Metall.Mater. Vol.41(2) (1993),345-360.

DOI: 10.1016/0956-7151(93)90065-z

Google Scholar

[10] J.M. Vitek, S.S. Babu, J.W. Park, S.A. David. Analysis of stray grain formation in single-crystal nickel-based superalloy welds, Proceedings of International Symposium on Superalloys. 2004, 459-465.

DOI: 10.7449/2004/superalloys_2004_459_465

Google Scholar

[11] J.W. Park, S.S. Babu, J.M. Vitek, E.A. Kenik, S.A. David. Stray grain formation in single crystal Ni-based superalloy welds, Journal of Applied Physics. Vol.94(6)(2003),4203-4209.

DOI: 10.1063/1.1602950

Google Scholar

[12] J.M. Vitek. The effect of welding conditions on stray grain formation in single crystal welds-theoretical analysis, Acta Materialia. 53(2005),53-67.

DOI: 10.1016/j.actamat.2004.08.039

Google Scholar

[13] N.Wang, S.Mokadem, M.Rappaz, W.Kurz. Solidification cracking of superalloy single- and bi- crystals, Acta Materialia. 52(2004),3173-3182.

DOI: 10.1016/j.actamat.2004.03.047

Google Scholar

[14] R.J. Moat, A.J. Pinkerton, L. Li, P.J. Wither, M.Preuss. Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy, Acta Materialia. 57(2009), 1220-1229.

DOI: 10.1016/j.actamat.2008.11.004

Google Scholar

[15] M.Gaumann, C.Bezencon, P.Canalis, W. Kurz. Single-crystal laser deposition of superalloys: processing-microstructure maps, Acta Mater. 49(2001),1051-1062.

DOI: 10.1016/s1359-6454(00)00367-0

Google Scholar

[16] A.Wagner, B.A. Shollock,M.Mclean. Grain structure development in directional solidification of nickel-based superalloys, Materials Science and Engineering A. 374(2004),270-279.

DOI: 10.1016/j.msea.2004.03.017

Google Scholar

[17] X.L. Yang, H.B. Dong, W.Wange, P.D. Lee. Microscale simulation of stray grain formation in investment cast turbine blades, Materials Science and Engineering A. 386(2004),129-139.

DOI: 10.1016/s0921-5093(04)00914-1

Google Scholar

[18] A.de. Bussac, Ch.a. Gandin. Prediction of a process window for the investment casting of dendritic single crystals, Materials Science and Engineering A. 237(1997),35-42.

DOI: 10.1016/s0921-5093(97)00081-6

Google Scholar

[19] Edward H. Kottcamp. ASM Handbook, Volume 3, Alloy phase diagrams, ASM International, USA,1993,49-155.

Google Scholar

[20] Wu Qiong, Li Shusuo, Ma Yue, Gong Shengkai. First principles calculations of alloying element diffusion coefficient in Ni using the five-frequency model, Chin.Phys.B. Vol.21 (10) (2012), 1091021-1-7.

DOI: 10.1088/1674-1056/21/10/109102

Google Scholar

[21] J.M. Vitek, S.A. David, S.S. Babu. Optimization of weld conditions and alloy composition for welding single-crystal nickel-based superalloys, Materials Science Forum. Vol.539-543(2007), 3082-3087.

DOI: 10.4028/www.scientific.net/msf.539-543.3082

Google Scholar