Influence of Substrate Rotational Speed on the Structural and Optical Properties of Sputtered Gd-Doped ZnO Thin Films

Article Preview

Abstract:

Rare-earth element of gadolinium (Gd) were successfully doped into zinc oxide (ZnO) using dual sputter source of DC and RF sputtering. The substrate rotation speed was controlled from 1 rpm to 9 rpm to investigate their effects on the properties of the films in order to achieve a great feature of thin film. XRD profiles confirmed the c-axis orientation with structure of ZnO hexagonal wurtzite. No peaks related to secondary phases were observed. The intensity of dominant peak showed increment upon improvement of substrate rotation speed. The incorporation of Gd into ZnO structure was further confirmed by composition element form EDX with average atomic percentage of 3 at. % for all the films. Surface topology from AFM images showed the grain size has increased with the higher speed of substrate rotation. Gd-doped ZnO thin films indicated good transparency with an average transmittance above 90 % regardless of substrate rotation speed. The bandgap has a slight decrease from 3.06 eV to 3.03 eV with an increment speed of rotational substrate. These findings further imply that the substrate rotation speed has a significant influence on the structural and optical properties of the sputtered thin films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1023)

Pages:

3-8

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kolodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: A review, Materials (Basel). 7 (2014) 2833–2881.

DOI: 10.3390/ma7042833

Google Scholar

[2] N. F. A. Rasid, S. N. M. Tawil, N. C. Ani, M. Z. Sahdan, Effect of crystallite size on the optical and structural properties of Gd-doped ZnO, Adv. Mater. Res. 1133 (2016) 414–418.

DOI: 10.4028/www.scientific.net/amr.1133.414

Google Scholar

[3] F. F. Vidor, G. I. Wirth, U. Hilleringmann, ZnO thin-film transistors for cost-efficient flexible electronics, (2017).

DOI: 10.1007/978-3-319-72556-7

Google Scholar

[4] S. Bhatia, N. Verma, M. Aggarwal, Effect of deposition time on sputtered ZnO thin films and their gas sensing application, J. Mater. Sci. Mater. Electron. 29 (2018) 18136–18143.

DOI: 10.1007/s10854-018-9925-z

Google Scholar

[5] V. Ananda, A. Sakthivelub, K. D. A. Kumarc, S. Valanarasuc, V. Ganeshd, M. Shkird, A. Kathalingame, S. AlFaify, Novel rare earth Gd and Al co-doped ZnO thin films prepared by nebulizer spray method for optoelectronic applications, Superlattices Microstruct. 123 (2018) 311–322.

DOI: 10.1016/j.spmi.2018.09.014

Google Scholar

[6] X. Y. Yi, C.Y.Ma, F. Yuan, N. Wang, F.W. Qin, B.C. Hu, Q.Y. Zhang, Structural, morphological, photoluminescence and photocatalytic properties of Gd-doped ZnO films, Thin Solid Films. 636 (2017) 339–345.

DOI: 10.1016/j.tsf.2017.05.020

Google Scholar

[7] S. Das, S. Das, S. Sutradhar, Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method, Ceram. Int. 43 (2017) 6932–6941.

DOI: 10.1016/j.ceramint.2017.02.116

Google Scholar

[8] D. Daksh, Y. K. Agrawal, Rare earth-doped zinc oxide nanostructures: A Review, Rev. Nanosci. Nanotechnol. 5 (2016) 1–27.

DOI: 10.1166/rnn.2016.1071

Google Scholar

[9] A. R. N. Fadzilah, R. N. Othman, A. Miskon, M. Z. Sahdan, S. N. M. Tawil, Gadolinium-doped zinc oxide thin films prepared on different substrates by sol-gel spin-coating, AIP Conf. Proc. 1901 (2017).

DOI: 10.1063/1.5010465

Google Scholar

[10] J. Dong, H. Li, D. Han, W. Yu, Z. Luo, Y. Liang, S. Zhang, X. Zhang, Y. Wang, Investigation of c-axis-aligned crystalline gadolinium doped aluminum-zinc-oxide films sputtered at room-temperature, Appl. Phys. Lett. 112 (2018) 012104.

DOI: 10.1063/1.5011226

Google Scholar

[11] X. Ma, The magnetic properties of Gd doped ZnO nanowires, Thin Solid Films. 520 (2012) 5752–5755.

DOI: 10.1016/j.tsf.2012.04.046

Google Scholar

[12] T. Deepa Rani, K. Tamilarasan, Structural and optical studies of Gd doped ZnO thin films grown by spray pyrolysis technique, Int. J. ChemTech Res. 8 (2015) 2227–2233.

Google Scholar

[13] E. A. Martín-tovar, L. G. Daza, A. J. R. López-arreguín, A. Iribarren, R. Castro-rodriguez, Effect of substrate rotation speed on structure and properties of Al-doped ZnO thin films prepared by rf-sputtering, Trans. Nonferrous Met. Soc. China English Ed. 27 (2017) 2055–(2062).

DOI: 10.1016/s1003-6326(17)60230-9

Google Scholar

[14] E. Alfonso, J. Olaya, G. Cubillos, Thin Film Growth Through Sputtering Technique and Its Applications, Cryst. Sci. Technology. (2012).

DOI: 10.5772/35844

Google Scholar

[15] N. A. Raship, S. N. M. Tawil, K. Ismail, N. Nayan, M. Tahan, A. S. Bakri, Effect of deposition ime on Gd doped ZnO using simultaneous RF and DC sputtering, Proc. 2019 IEEE Reg. Symp. Micro Nanoelectron. (2019) 38–41.

DOI: 10.1109/rsm46715.2019.8943509

Google Scholar

[16] F. Turkoglu, H. Koseoglu, S. Zeybek, M. Ozdemir, G. Aygun, L. Ozyuzer, Effect of substrate rotation speed and off-center deposition on the structural, optical, and electrical properties of AZO thin films fabricated by DC magnetron sputtering, J. Appl. Phys. 123 (2018).

DOI: 10.1063/1.5012883

Google Scholar

[17] V. K. Jayaraman, Y. M. Kuwabara, A. M. Álvarez, M. D. L. L. O. Amador, Importance of substrate rotation speed on the growth of homogeneous ZnO thin films by reactive sputtering, Mater. Lett. 169 (2016) 1–4.

DOI: 10.1016/j.matlet.2016.01.088

Google Scholar

[18] S. N. M. Tawil, C. A. Norhidayah, N.Sarip, S.A. Kamaruddin, A. R. Nurulfadzilah, A. Miskon, M. Z. Sahdan, Effect of rare-earth Gd incorporation on the characteristics of ZnO thin film, J. Nanosci. Nanotechnol. 15 (2015) 9212–9216.

DOI: 10.1166/jnn.2015.11418

Google Scholar