[1]
T.M Nguyen, L. Weitzler, C. I. Esposito, A.A Porporati, D.E. Padgett & T.M. Wright, Zirconia Phase Transformation in Zirconia-Toughened Alumina Ceramic Femoral Heads: An Implant Retrieval Analysis. The Journal of arthroplasty, 34 no. 12 (2019), 3094-3098.
DOI: 10.1016/j.arth.2019.07.014
Google Scholar
[2]
H.L. Teow, S. Sivanesan, S. Y. Noum, Effect of Fe2O3 on the densification behaviour and mechanical properties of zirconia-toughened alumina (ZTA) composites prepared by two-stage sintering. In AIP Conference Proceedings 2020 May 4 Vol. 2233, no. 1, (2020) p.020029.
DOI: 10.1063/5.0001622
Google Scholar
[3]
S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, Two-Stage Sintering of Alumina-Y-TZP (Al2O3 /Y-TZP) Composites. Key Engineering Materials Vol. 814, (2019) 12-18.
DOI: 10.4028/www.scientific.net/kem.814.12
Google Scholar
[4]
P. Tan, Y. Yang, Y. Sui Y, Y. Jiang, Influence of CeO2 addition on the microstructure and mechanical properties of Zirconia-toughened alumina (ZTA) composite prepared by spark plasma sintering, Ceramics International, 46 no.6 (2020) 7510-7516.
DOI: 10.1016/j.ceramint.2019.11.249
Google Scholar
[5]
S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, 2019 Effects of CeO2 Addition on Slip-Cast Yttria Tetragonal Zirconia Polycrystals Toughened Alumina (ZTA), Key Engineering Materials, 814 (2019) 340-346.
DOI: 10.4028/www.scientific.net/kem.814.340
Google Scholar
[6]
H. L. Teow, S. Sivanesan, S. Y. Noum, Densification behaviour and mechanical properties of CuO doped zirconia-toughened alumina (ZTA) composites prepared by two-stage sintering, In AIP Conference Proceedings 2020 May 4, 2233 no. 1 (2020) p.020028.
DOI: 10.1063/5.0001623
Google Scholar
[7]
S. M. Kurtz, S. Kocagöz, C. Arnholt, R. Huet, M. Ueno, W. L. Walter, Advances in zirconia toughened alumina biomaterials for total joint replacement, Journal of the mechanical behavior of biomedical materials, 31 (2014) 107-116.
DOI: 10.1016/j.jmbbm.2013.03.022
Google Scholar
[8]
J. Fan, T. Lin, F. Hu, Y. Yu, M. Ibrahim, R. Zheng, S. Huang, J. Ma, Effect of sintering temperature on microstructure and mechanical properties of zirconia-toughened alumina machinable dental ceramics, Ceramics International, 43 no.4 (2017) 3647-3653.
DOI: 10.1016/j.ceramint.2016.11.204
Google Scholar
[9]
Y. Sui, L. Han, Y. Jiang, Effect of Ta2O5 addition on the microstructure and mechanical properties of TiO2-added yttria-stabilized zirconia-toughened alumina (ZTA) composites. Ceramics International, 44 no.12 (2018) 14811-14816.
DOI: 10.1016/j.ceramint.2018.05.112
Google Scholar
[10]
Arab A, Sktani Z D, Zhou Q, Ahmad Z A, Chen P 2019 Effect of MgO addition on the mechanical and dynamic properties of zirconia toughened alumina (ZTA) ceramics. Materials, 12(15) 2440.
DOI: 10.3390/ma12152440
Google Scholar
[11]
P. Tan, P. Wu, L. Gao, Y. Sui, Y. Jiang, Influence of Si3N4 content on the physical and mechanical properties of zirconia-toughened alumina (ZTA) ceramic composites, Materials Research Express, 6 no.6 (2019) 65205.
DOI: 10.1088/2053-1591/ab0e54
Google Scholar
[12]
A. Moradkhani, H. Baharvandi, Effects of additive amount, testing method, fabrication process and sintering temperature on the mechanical properties of Al2O3/3Y-TZP composites, Engineering Fracture Mechanics, 191 (2018) 446-460.
DOI: 10.1016/j.engfracmech.2017.12.033
Google Scholar
[13]
A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials 23 no.3 (2002) 937-945.
DOI: 10.1016/s0142-9612(01)00206-x
Google Scholar
[14]
V. Naglieri, P. Palmero, L. Montanaro, J. Chevalier, Elaboration of alumina-zirconia composites: Role of the zirconia content on the microstructure and mechanical properties, Materials, 6 no.5 (2013) 2090-2102.
DOI: 10.3390/ma6052090
Google Scholar
[15]
S. R. Choi, N. P. Bansal, Mechanical behavior of zirconia/alumina composites, Ceramics International, 31 no.1 (2005) 39-46.
DOI: 10.1016/j.ceramint.2004.03.032
Google Scholar
[16]
W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, P. Kuo, Mechanical properties of Al2O3 /ZrO2 composites, Journal of the European Ceramic Society 22 no.16 (2002) 2827-2833.
DOI: 10.1016/s0955-2219(02)00043-2
Google Scholar
[17]
I. W. Chen, X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 404 no.6774 (2000) 168-171.
DOI: 10.1038/35004548
Google Scholar
[18]
K. Bodišová, P. Šajgalík, D. Galusek, P. Švančárek, Two‐stage sintering of alumina with submicrometer grain size, Journal of the American Ceramic Society, 1 (2007) 330-332.
DOI: 10.1111/j.1551-2916.2006.01408.x
Google Scholar
[19]
M. Mazaheri, A. Simchi, F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering, Journal of the European Ceramic Society, 28 no. 15 (2008) 2933-2939.
DOI: 10.1016/j.jeurceramsoc.2008.04.030
Google Scholar
[20]
X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G. Qu, L. T. Li, I. W. Chen, Two‐step sintering of ceramics with constant grain‐size, II: BaTiO3 and Ni–Cu–Zn ferrite, Journal of the American Ceramic Society, 89 no.2 (2006) 438-443.
DOI: 10.1111/j.1551-2916.2005.00728.x
Google Scholar
[21]
A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A novel approach to sintering nanocrystalline barium titanate ceramics, Journal of the American Ceramic Society, 88 no.11 (2005) 3008-3012.
DOI: 10.1111/j.1551-2916.2005.00552.x
Google Scholar
[22]
Y. I. Lee, Y. W. Kim, M. Mitomo, D. Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two‐step sintering, Journal of the American Ceramic Society, 86 no.10 (2003) 1803-1805.
DOI: 10.1111/j.1151-2916.2003.tb03560.x
Google Scholar
[23]
K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, Journal of materials science letters, 2 no.5 (1983) 221-223.
DOI: 10.1007/bf00725625
Google Scholar
[24]
M. Amiriyan, M. Satgunam, S. Sivakumar, S. Ramesh, R. Tolouei, Sinterability and mechanical properties of MnO2-doped Y-TZP: The effects of holding time variations, In Applied Mechanics and Materials, 110 (2012) 1284-1288.
DOI: 10.4028/www.scientific.net/amm.110-116.1284
Google Scholar
[25]
S. Sivanesan, R. Singh, C. K. Leong, The governance of sintering regimes on the properties and ageing resistance of Y-TZP ceramic, In Advanced Materials Research, 545 (2012) 81-87.
DOI: 10.4028/www.scientific.net/amr.545.81
Google Scholar
[26]
S. Sivanesan, R. Singh, H. L. Teow, Y. L. Chuan, C. K. Leong, Effect of Short Time Sintering on the Mechanical Properties of Undoped Zirconia Ceramics, In Applied Mechanics and Materials, 29 (2014) 420-425.
DOI: 10.4028/www.scientific.net/amm.629.420
Google Scholar
[27]
I. Žmak, D. Ćorić, V. Mandić, L. Ćurković, Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics, Materials, 13 no.1 (2020) 122.
DOI: 10.3390/ma13010122
Google Scholar
[28]
T. To, C. Stabler, E. Ionescu, R. Riedel, F. Célarié, T. Rouxel, Elastic properties and fracture toughness of SiOC‐based glass‐ceramic nanocomposites, Journal of the American Ceramic Society, 103 no.1 (2020) 491-499.
DOI: 10.1111/jace.16686
Google Scholar
[29]
Q. Jing, J. Bao, F. Ruan, X. Song, S. An, Y. Zhang, Z. Tian, H. Lv, J. Gao, M. Xie, High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications, Ceramics International, 45 no.5 (2019) 6066-6073.
DOI: 10.1016/j.ceramint.2018.12.078
Google Scholar
[30]
F. F. Lange, M. M. Hirlinger, Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions, Journal of the American ceramic society, 67 no.3 (1984) 164-168.
DOI: 10.1111/j.1151-2916.1984.tb19734.x
Google Scholar
[31]
J. Wang, R. Raj, Activation energy for the sintering of two‐phase alumina/zirconia ceramics, Journal of the American Ceramic Society, 74 no.8 (1991) 1959-1963.
DOI: 10.1111/j.1151-2916.1991.tb07815.x
Google Scholar
[32]
C. J. Wang, C. Y. Huang, Y. C. Wu, Two-step sintering of fine alumina–zirconia ceramics, Ceramics International, 35 no.4 (2009) 1467-1472.
DOI: 10.1016/j.ceramint.2008.08.001
Google Scholar
[33]
A. M. Hassan, S. M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites, International Journal of Refractory Metals and Hard Materials, 48 (2015) 338-345.
DOI: 10.1016/j.ijrmhm.2014.10.006
Google Scholar
[34]
K. Biotteau-Deheuvels, L. Zych, L. Gremillard, J. Chevalier, Effects of Ca-, Mg-and Si-doping on microstructures of alumina–zirconia composites, Journal of the European Ceramic Society, 32 no.11 (2012) 2711-2721.
DOI: 10.1016/j.jeurceramsoc.2011.11.011
Google Scholar
[35]
R. C. Bradt, C. A. Brookes & J. L. Routbort, Plastic deformation of ceramics. Springer Science & Business Media, (2013).
Google Scholar
[36]
M. Asmani, C. Kermel, A. Leriche, M. Ourak, Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics, Journal of the European ceramic society, 21 no.8 (2001) 1081-1086.
DOI: 10.1016/s0955-2219(00)00314-9
Google Scholar