Effect of Temperature and Holding Time on Zirconia Toughened Alumina (ZTA) Prepared by Two-Stage Sintering

Article Preview

Abstract:

The microstructure and mechanical properties of Zirconia Toughened Alumina (ZTA) produced via two-stage sintering at various sintering temperature of T1 and T2 in addition to effect of various holding time were investigated. T1 temperature was set between the range of 1400°C to 1500°C with a heating rate of 20°C/min. The samples were then sintered at T2 ranging from 1350°C to 1400°C followed by various holding time between 2 hours to 12 hours. The sintered samples’ microstructural properties, bulk density, hardness (Vickers hardness), elastic modulus (Young’s modulus) and fracture toughness (K1C) were then determined. Compared to standard holding time of two-stage sintering which is 12 hours, results show that ZTA produced via two-stage sintering with shorter holding time of 4 hours with T1 set at 1500°C and T2 of 1450°C are capable of achieving full densification. In addition, the same sample were also able to achieve hardness up to 19 GPa, Young’s modulus of 390 GPa and fracture toughness of 6.1 MPam1/2. The improvement in mechanical properties can be mainly attributed to the absent of surface diffusion at T2 above 1400°C and also presence of Y-TZP which contributed to lower grain growth due to the pinning effect.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1030)

Pages:

11-18

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.M Nguyen, L. Weitzler, C. I. Esposito, A.A Porporati, D.E. Padgett & T.M. Wright, Zirconia Phase Transformation in Zirconia-Toughened Alumina Ceramic Femoral Heads: An Implant Retrieval Analysis. The Journal of arthroplasty, 34 no. 12 (2019), 3094-3098.

DOI: 10.1016/j.arth.2019.07.014

Google Scholar

[2] H.L. Teow, S. Sivanesan, S. Y. Noum, Effect of Fe2O3 on the densification behaviour and mechanical properties of zirconia-toughened alumina (ZTA) composites prepared by two-stage sintering. In AIP Conference Proceedings 2020 May 4 Vol. 2233, no. 1, (2020) p.020029.

DOI: 10.1063/5.0001622

Google Scholar

[3] S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, Two-Stage Sintering of Alumina-Y-TZP (Al2O3 /Y-TZP) Composites. Key Engineering Materials Vol. 814, (2019) 12-18.

DOI: 10.4028/www.scientific.net/kem.814.12

Google Scholar

[4] P. Tan, Y. Yang, Y. Sui Y, Y. Jiang, Influence of CeO2 addition on the microstructure and mechanical properties of Zirconia-toughened alumina (ZTA) composite prepared by spark plasma sintering, Ceramics International, 46 no.6 (2020) 7510-7516.

DOI: 10.1016/j.ceramint.2019.11.249

Google Scholar

[5] S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, 2019 Effects of CeO2 Addition on Slip-Cast Yttria Tetragonal Zirconia Polycrystals Toughened Alumina (ZTA), Key Engineering Materials, 814 (2019) 340-346.

DOI: 10.4028/www.scientific.net/kem.814.340

Google Scholar

[6] H. L. Teow, S. Sivanesan, S. Y. Noum, Densification behaviour and mechanical properties of CuO doped zirconia-toughened alumina (ZTA) composites prepared by two-stage sintering, In AIP Conference Proceedings 2020 May 4, 2233 no. 1 (2020) p.020028.

DOI: 10.1063/5.0001623

Google Scholar

[7] S. M. Kurtz, S. Kocagöz, C. Arnholt, R. Huet, M. Ueno, W. L. Walter, Advances in zirconia toughened alumina biomaterials for total joint replacement, Journal of the mechanical behavior of biomedical materials, 31 (2014) 107-116.

DOI: 10.1016/j.jmbbm.2013.03.022

Google Scholar

[8] J. Fan, T. Lin, F. Hu, Y. Yu, M. Ibrahim, R. Zheng, S. Huang, J. Ma, Effect of sintering temperature on microstructure and mechanical properties of zirconia-toughened alumina machinable dental ceramics, Ceramics International, 43 no.4 (2017) 3647-3653.

DOI: 10.1016/j.ceramint.2016.11.204

Google Scholar

[9] Y. Sui, L. Han, Y. Jiang, Effect of Ta2O5 addition on the microstructure and mechanical properties of TiO2-added yttria-stabilized zirconia-toughened alumina (ZTA) composites. Ceramics International, 44 no.12 (2018) 14811-14816.

DOI: 10.1016/j.ceramint.2018.05.112

Google Scholar

[10] Arab A, Sktani Z D, Zhou Q, Ahmad Z A, Chen P 2019 Effect of MgO addition on the mechanical and dynamic properties of zirconia toughened alumina (ZTA) ceramics. Materials, 12(15) 2440.

DOI: 10.3390/ma12152440

Google Scholar

[11] P. Tan, P. Wu, L. Gao, Y. Sui, Y. Jiang, Influence of Si3N4 content on the physical and mechanical properties of zirconia-toughened alumina (ZTA) ceramic composites, Materials Research Express, 6 no.6 (2019) 65205.

DOI: 10.1088/2053-1591/ab0e54

Google Scholar

[12] A. Moradkhani, H. Baharvandi, Effects of additive amount, testing method, fabrication process and sintering temperature on the mechanical properties of Al2O3/3Y-TZP composites, Engineering Fracture Mechanics, 191 (2018) 446-460.

DOI: 10.1016/j.engfracmech.2017.12.033

Google Scholar

[13] A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials 23 no.3 (2002) 937-945.

DOI: 10.1016/s0142-9612(01)00206-x

Google Scholar

[14] V. Naglieri, P. Palmero, L. Montanaro, J. Chevalier, Elaboration of alumina-zirconia composites: Role of the zirconia content on the microstructure and mechanical properties, Materials, 6 no.5 (2013) 2090-2102.

DOI: 10.3390/ma6052090

Google Scholar

[15] S. R. Choi, N. P. Bansal, Mechanical behavior of zirconia/alumina composites, Ceramics International, 31 no.1 (2005) 39-46.

DOI: 10.1016/j.ceramint.2004.03.032

Google Scholar

[16] W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, P. Kuo, Mechanical properties of Al2O3 /ZrO2 composites, Journal of the European Ceramic Society 22 no.16 (2002) 2827-2833.

DOI: 10.1016/s0955-2219(02)00043-2

Google Scholar

[17] I. W. Chen, X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 404 no.6774 (2000) 168-171.

DOI: 10.1038/35004548

Google Scholar

[18] K. Bodišová, P. Šajgalík, D. Galusek, P. Švančárek, Two‐stage sintering of alumina with submicrometer grain size, Journal of the American Ceramic Society, 1 (2007) 330-332.

DOI: 10.1111/j.1551-2916.2006.01408.x

Google Scholar

[19] M. Mazaheri, A. Simchi, F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering, Journal of the European Ceramic Society, 28 no. 15 (2008) 2933-2939.

DOI: 10.1016/j.jeurceramsoc.2008.04.030

Google Scholar

[20] X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G. Qu, L. T. Li, I. W. Chen, Two‐step sintering of ceramics with constant grain‐size, II: BaTiO3 and Ni–Cu–Zn ferrite, Journal of the American Ceramic Society, 89 no.2 (2006) 438-443.

DOI: 10.1111/j.1551-2916.2005.00728.x

Google Scholar

[21] A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A novel approach to sintering nanocrystalline barium titanate ceramics, Journal of the American Ceramic Society, 88 no.11 (2005) 3008-3012.

DOI: 10.1111/j.1551-2916.2005.00552.x

Google Scholar

[22] Y. I. Lee, Y. W. Kim, M. Mitomo, D. Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two‐step sintering, Journal of the American Ceramic Society, 86 no.10 (2003) 1803-1805.

DOI: 10.1111/j.1151-2916.2003.tb03560.x

Google Scholar

[23] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, Journal of materials science letters, 2 no.5 (1983) 221-223.

DOI: 10.1007/bf00725625

Google Scholar

[24] M. Amiriyan, M. Satgunam, S. Sivakumar, S. Ramesh, R. Tolouei, Sinterability and mechanical properties of MnO2-doped Y-TZP: The effects of holding time variations, In Applied Mechanics and Materials, 110 (2012) 1284-1288.

DOI: 10.4028/www.scientific.net/amm.110-116.1284

Google Scholar

[25] S. Sivanesan, R. Singh, C. K. Leong, The governance of sintering regimes on the properties and ageing resistance of Y-TZP ceramic, In Advanced Materials Research, 545 (2012) 81-87.

DOI: 10.4028/www.scientific.net/amr.545.81

Google Scholar

[26] S. Sivanesan, R. Singh, H. L. Teow, Y. L. Chuan, C. K. Leong, Effect of Short Time Sintering on the Mechanical Properties of Undoped Zirconia Ceramics, In Applied Mechanics and Materials, 29 (2014) 420-425.

DOI: 10.4028/www.scientific.net/amm.629.420

Google Scholar

[27] I. Žmak, D. Ćorić, V. Mandić, L. Ćurković, Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics, Materials, 13 no.1 (2020) 122.

DOI: 10.3390/ma13010122

Google Scholar

[28] T. To, C. Stabler, E. Ionescu, R. Riedel, F. Célarié, T. Rouxel, Elastic properties and fracture toughness of SiOC‐based glass‐ceramic nanocomposites, Journal of the American Ceramic Society, 103 no.1 (2020) 491-499.

DOI: 10.1111/jace.16686

Google Scholar

[29] Q. Jing, J. Bao, F. Ruan, X. Song, S. An, Y. Zhang, Z. Tian, H. Lv, J. Gao, M. Xie, High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications, Ceramics International, 45 no.5 (2019) 6066-6073.

DOI: 10.1016/j.ceramint.2018.12.078

Google Scholar

[30] F. F. Lange, M. M. Hirlinger, Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions, Journal of the American ceramic society, 67 no.3 (1984) 164-168.

DOI: 10.1111/j.1151-2916.1984.tb19734.x

Google Scholar

[31] J. Wang, R. Raj, Activation energy for the sintering of two‐phase alumina/zirconia ceramics, Journal of the American Ceramic Society, 74 no.8 (1991) 1959-1963.

DOI: 10.1111/j.1151-2916.1991.tb07815.x

Google Scholar

[32] C. J. Wang, C. Y. Huang, Y. C. Wu, Two-step sintering of fine alumina–zirconia ceramics, Ceramics International, 35 no.4 (2009) 1467-1472.

DOI: 10.1016/j.ceramint.2008.08.001

Google Scholar

[33] A. M. Hassan, S. M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites, International Journal of Refractory Metals and Hard Materials, 48 (2015) 338-345.

DOI: 10.1016/j.ijrmhm.2014.10.006

Google Scholar

[34] K. Biotteau-Deheuvels, L. Zych, L. Gremillard, J. Chevalier, Effects of Ca-, Mg-and Si-doping on microstructures of alumina–zirconia composites, Journal of the European Ceramic Society, 32 no.11 (2012) 2711-2721.

DOI: 10.1016/j.jeurceramsoc.2011.11.011

Google Scholar

[35] R. C. Bradt, C. A. Brookes & J. L. Routbort,  Plastic deformation of ceramics. Springer Science & Business Media, (2013).

Google Scholar

[36] M. Asmani, C. Kermel, A. Leriche, M. Ourak, Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics, Journal of the European ceramic society, 21 no.8 (2001) 1081-1086.

DOI: 10.1016/s0955-2219(00)00314-9

Google Scholar