Densification Behaviour and Mechanical Properties on MgO Doped Zirconia Toughened Alumina (ZTA) Prepared by Two-Stage Sintering

Article Preview

Abstract:

The effect of doping small amounts of Magnesium Oxide ranging between 0 to 1 vol% on Zirconia Toughened Alumina (ZTA) composites which is one of main biomaterial used for production of total hip arthroplasty were investigated. The samples were produced via conventional two-stage sintering with T1 varies between 1450°C and 1550°C with heating rate of 20°C/min. The samples were then rapid cooled to T2 set at 1400°C with holding time of 12 hours. The microstructural and mechanical properties of the two-stage sintered ZTA are then investigated to determine the feasibility of MgO addition. Combination of two-stage sintering at T1 above 1500 and also small amount of MgO up to 0.5 vol% were shown to have positive effect on ZTA which exhibited improvement on its grain size, mechanical properties such as Vickers hardness, Young’s modulus and fracture toughness compared to undoped ZTA composites. The sample with 0.5 vol% MgO addition sintered at T1 of 1500°C and T2 1400°C was able to achieve Vickers hardness of 19.6 GPa, Young’s modulus of 408 GPa and fracture toughness of 6.8 MPam1/2 without significant grain growth compared to undoped ZTA composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1030)

Pages:

3-10

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wang, C. Li, X. Si, J. Qi, J. Feng, J. Cao, Brazing ZTA ceramic to TC4 alloy using the Cu foam as interlayer, Vacuum, 155 (2018) 7-15.

DOI: 10.1016/j.vacuum.2018.05.038

Google Scholar

[2] T. M. Nguyen, L. Weitzler, C. I. Esposito, A. A. Porporati, D. E. Padgett, T. M. Wright, Zirconia Phase Transformation in Zirconia-Toughened Alumina Ceramic Femoral Heads: An Implant Retrieval Analysis, The Journal of arthroplasty, 34 no.12 (2019) 3094-3098.

DOI: 10.1016/j.arth.2019.07.014

Google Scholar

[3] H. L. Teow, S. Sivanesan, S. Y. Noum, Effect of Fe2O3 on the densification behaviour and mechanical properties of zirconia-toughened alumina (ZTA) composites prepared by two-stage sintering. In AIP Conference Proceedings 2020 May 4, 2233, no. 1, (2020) p.020029.

DOI: 10.1063/5.0001622

Google Scholar

[4] S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, Two-Stage Sintering of Alumina-Y-TZP (Al2O3 /Y-TZP) Composites. Key Engineering Materials Vol. 814, (2019) 12-18.

DOI: 10.4028/www.scientific.net/kem.814.12

Google Scholar

[5] P. Tan, Y. Yang, Y. Sui Y, Y. Jiang, Influence of CeO2 addition on the microstructure and mechanical properties of Zirconia-toughened alumina (ZTA) composite prepared by spark plasma sintering, Ceramics International, 46 no.6 (2020) 7510-7516.

DOI: 10.1016/j.ceramint.2019.11.249

Google Scholar

[6] S. Sivanesan, T. H. Loong, S. Namasivayam, M. H. Fouladi, 2019 Effects of CeO2 Addition on Slip-Cast Yttria Tetragonal Zirconia Polycrystals Toughened Alumina (ZTA), Key Engineering Materials, 814 (2019) 340-346.

DOI: 10.4028/www.scientific.net/kem.814.340

Google Scholar

[7] H. L. Teow, S. Sivanesan, S. Y. Noum, Densification behaviour and mechanical properties of CuO doped zirconia-toughened alumina (ZTA) composites prepared by two-stage sintering, In AIP Conference Proceedings 2020 May 4, 2233 no. 1 (2020) p.020028.

DOI: 10.1063/5.0001623

Google Scholar

[8] A. Moradkhani, H. Baharvandi, Effects of additive amount, testing method, fabrication process and sintering temperature on the mechanical properties of Al2O3/3Y-TZP composites, Engineering Fracture Mechanics, 191 (2018) 446-460.

DOI: 10.1016/j.engfracmech.2017.12.033

Google Scholar

[9] A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials 23 no.3 (2002) 937-945.

DOI: 10.1016/s0142-9612(01)00206-x

Google Scholar

[10] V. Naglieri, P. Palmero, L. Montanaro, J. Chevalier, Elaboration of alumina-zirconia composites: Role of the zirconia content on the microstructure and mechanical properties, Materials, 6 no.5 (2013) 2090-2102.

DOI: 10.3390/ma6052090

Google Scholar

[11] H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song , Y. Chen, I. Cheng and S. Wu, Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceramics International, 43 no.1 (2017) 968-972.

DOI: 10.1016/j.ceramint.2016.10.027

Google Scholar

[12] S. R. Choi, N. P. Bansal, Mechanical behavior of zirconia/alumina composites, Ceramics International, 31 no.1 (2005) 39-46.

DOI: 10.1016/j.ceramint.2004.03.032

Google Scholar

[13] W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, P. Kuo, Mechanical properties of Al2O3 /ZrO2 composites, Journal of the European Ceramic Society 22 no.16 (2002) 2827-2833.

DOI: 10.1016/s0955-2219(02)00043-2

Google Scholar

[14] I. W. Chen, X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 404 no.6774 (2000) 168-171.

DOI: 10.1038/35004548

Google Scholar

[15] K. Bodišová, P. Šajgalík, D. Galusek, P. Švančárek, Two‐stage sintering of alumina with submicrometer grain size, Journal of the American Ceramic Society, 1 (2007) 330-332.

DOI: 10.1111/j.1551-2916.2006.01408.x

Google Scholar

[16] M. Mazaheri, A. Simchi, F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering, Journal of the European Ceramic Society, 28 no. 15 (2008) 2933-2939.

DOI: 10.1016/j.jeurceramsoc.2008.04.030

Google Scholar

[17] X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G. Qu, L. T. Li, I. W. Chen, Two‐step sintering of ceramics with constant grain‐size, II: BaTiO3 and Ni–Cu–Zn ferrite, Journal of the American Ceramic Society, 89 no.2 (2006) 438-443.

DOI: 10.1111/j.1551-2916.2005.00728.x

Google Scholar

[18] A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A novel approach to sintering nanocrystalline barium titanate ceramics, Journal of the American Ceramic Society, 88 no.11 (2005) 3008-3012.

DOI: 10.1111/j.1551-2916.2005.00552.x

Google Scholar

[19] Y. I. Lee, Y. W. Kim, M. Mitomo, D. Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two‐step sintering, Journal of the American Ceramic Society, 86 no.10 (2003) 1803-1805.

DOI: 10.1111/j.1151-2916.2003.tb03560.x

Google Scholar

[20] A. Rittidech, L. Portia & T. Bongkarn, The relationship between microstructure and mechanical properties of Al2O3–MgO ceramics, Materials Science and Engineering: A, 438 (2006) 395-398.

DOI: 10.1016/j.msea.2006.02.176

Google Scholar

[21] Y. Ji & J. A. Yeomans, Processing and mechanical properties of Al2O3–5 vol.% Cr nanocomposites Journal of the European Ceramic Society, 22 no.12 (2002) 1927-1936.

DOI: 10.1016/s0955-2219(01)00528-3

Google Scholar

[22] C. T. Fu, J. M. Wu & A.K. Li, Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites, Journal of materials science, 29 no.10 (1994) 2671-2677.

DOI: 10.1007/bf00356816

Google Scholar

[23] M. Amiriyan, M. Satgunam, S. Sivakumar, S. Ramesh, R. Tolouei, Sinterability and mechanical properties of MnO2-doped Y-TZP: The effects of holding time variations, In Applied Mechanics and Materials, 110 (2012) 1284-1288.

DOI: 10.4028/www.scientific.net/amm.110-116.1284

Google Scholar

[24] S. Sivanesan, R. Singh, C. K. Leong, The governance of sintering regimes on the properties and ageing resistance of Y-TZP ceramic, In Advanced Materials Research, 545 (2012) 81-87.

DOI: 10.4028/www.scientific.net/amr.545.81

Google Scholar

[25] S. Sivanesan, R. Singh, H. L. Teow, Y. L. Chuan, C. K. Leong, Effect of Short Time Sintering on the Mechanical Properties of Undoped Zirconia Ceramics, In Applied Mechanics and Materials, 29 (2014) 420-425.

DOI: 10.4028/www.scientific.net/amm.629.420

Google Scholar

[26] I. Žmak, D. Ćorić, V. Mandić, L. Ćurković, Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics, Materials, 13 no.1 (2020) 122.

DOI: 10.3390/ma13010122

Google Scholar

[27] T. To, C. Stabler, E. Ionescu, R. Riedel, F. Célarié, T. Rouxel, Elastic properties and fracture toughness of SiOC‐based glass‐ceramic nanocomposites, Journal of the American Ceramic Society, 103 no.1 (2020) 491-499.

DOI: 10.1111/jace.16686

Google Scholar

[28] Q. Jing, J. Bao, F. Ruan, X. Song, S. An, Y. Zhang, Z. Tian, H. Lv, J. Gao, M. Xie, High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications, Ceramics International, 45 no.5 (2019) 6066-6073.

DOI: 10.1016/j.ceramint.2018.12.078

Google Scholar

[29] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, Journal of materials science letters, 2 no.5 (1983) 221-223.

DOI: 10.1007/bf00725625

Google Scholar

[30] F. F. Lange, M. M. Hirlinger, Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions, Journal of the American ceramic society, 67 no.3 (1984) 164-168.

DOI: 10.1111/j.1151-2916.1984.tb19734.x

Google Scholar

[31] J. Wang, R. Raj, Activation energy for the sintering of two‐phase alumina/zirconia ceramics, Journal of the American Ceramic Society, 74 no.8 (1991) 1959-1963.

DOI: 10.1111/j.1151-2916.1991.tb07815.x

Google Scholar

[32] C. J. Wang, C. Y. Huang, Y. C. Wu, Two-step sintering of fine alumina–zirconia ceramics, Ceramics International, 35 no.4 (2009) 1467-1472.

DOI: 10.1016/j.ceramint.2008.08.001

Google Scholar

[33] A. M. Hassan, S. M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites, International Journal of Refractory Metals and Hard Materials, 48 (2015) 338-345.

DOI: 10.1016/j.ijrmhm.2014.10.006

Google Scholar

[34] K. Biotteau-Deheuvels, L. Zych, L. Gremillard, J. Chevalier, Effects of Ca-, Mg-and Si-doping on microstructures of alumina–zirconia composites, Journal of the European Ceramic Society, 32 no.11 (2012) 2711-2721.

DOI: 10.1016/j.jeurceramsoc.2011.11.011

Google Scholar

[35] M. Asmani, C. Kermel, A. Leriche, M. Ourak, Influence of porosity on Young's modulus and Poisson's ratio in alumina ceramics, Journal of the European ceramic society, 21 no.8 (2001) 1081-1086.

DOI: 10.1016/s0955-2219(00)00314-9

Google Scholar

[36] M. Xue, S. Liu, X. Wang, K. Jiang, High fracture toughness of 3Y-TZP ceramic over a wide sintering range, Materials Chemistry and Physics, 244 (2020) 122693.

DOI: 10.1016/j.matchemphys.2020.122693

Google Scholar

[37] Z. G. Wang, J. H. Ouyang, Y. H. Ma, Y. J. Wang, L. Y. Xie, Z. G. Liu, A. Henniche, Y. Wang, Grain size dependence, mechanical properties and surface nanoeutectic modification of Al2O3-ZrO2 ceramic, Ceramics International, 45 no.11 (2019) 14297-14304.

DOI: 10.1016/j.ceramint.2019.04.140

Google Scholar