[1]
Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Appl Catal B: Environ, 2012, 125: 331-349.
DOI: 10.1016/j.apcatb.2012.05.036
Google Scholar
[2]
Tank CM, Sakhare YS, Kanhe NS, et al. Electric field enhanced photocatalytic properties of TiO2 nanoparticles immobilized in porous silicon template [J]. Solid State Sci, 2011, 13(8): 1500-1504.
DOI: 10.1016/j.solidstatesciences.2011.05.010
Google Scholar
[3]
Xie YB, Xuan Y, Liang Y, et al. Preparation and photocatalytic properties of ZnxCd1-xS nanospheres [J]. Journal of Yunnan University: Natural Sciences Edition, 2018, 40(3): 521-528. (in Chinese).
Google Scholar
[4]
Osterloh FE. Inorganic materials as catalysts for photochemical splitting of water [J]. Chem Mater, 2008, 20(1): 35-54.
DOI: 10.1021/cm7024203
Google Scholar
[5]
Lin XP, Xing JC, Wang WD, et al. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts [J]. J Phys Chem C, 2007, 111(49): 18288-18293.
DOI: 10.1021/jp073955d
Google Scholar
[6]
Wang XC, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat Mater, 2009, 8: 76-80.
DOI: 10.1038/nmat2317
Google Scholar
[7]
Ge L, Han CC, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange [J]. Appl Catal B: Environ, 2011, 108–109: 100-107.
DOI: 10.1016/j.apcatb.2011.08.014
Google Scholar
[8]
Ge L, Han CC. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity [J]. Appl Catal B: Environ, 2012, 117–118: 268-274.
DOI: 10.1016/j.apcatb.2012.01.021
Google Scholar
[9]
Liu W, Wang ML, Xu CX, et al. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties [J]. Chem Engin J, 2012, 209: 386-393.
DOI: 10.1016/j.cej.2012.08.033
Google Scholar
[10]
Fu J, Tian YL, Chang BB, et al. BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism [J]. J Mater Chem, 2012, 22(39): 21159-21166.
DOI: 10.1039/c2jm34778d
Google Scholar
[11]
Wu ZC, Gao HL, Yan SC, et al. Synthesis of carbon black/carbon nitride intercalation compound composite for efficient hydrogen production [J]. Dalton Trans, 2014, 43(31): 12013-12017.
DOI: 10.1039/c4dt00256c
Google Scholar
[12]
Zhang YJ, Mori T, Ye JH, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation [J]. J Am Chem Soc, 2010, 132(18): 6294-6295.
DOI: 10.1021/ja101749y
Google Scholar
[13]
Yan SC, Li ZS, Zou ZG. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation [J]. Langmuir, 2010, 26(6): 3894-3901.
DOI: 10.1021/la904023j
Google Scholar
[14]
Liu G, Niu P, Sun C H, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 [J]. J Am Chem Soc, 2010, 132(33): 11642-11648.
DOI: 10.1021/ja103798k
Google Scholar
[15]
Yue B, Li QY, Iwai H, et al. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light [J]. Sci Technol Adv Mater, 2011, 12(3): 034401-1.
DOI: 10.1088/1468-6996/12/3/034401
Google Scholar
[16]
Gao HL, Yan SC, Wang JJ, et al. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst [J]. Phys Chem Chem Phys, 2013, 15(41): 18077-18084.
DOI: 10.1039/c3cp53774a
Google Scholar
[17]
Yang M, Wan LJ, Jin XQ. Synthesis of ZnGaNO solid solution–carbon nitride intercalation compound composite for improved visible light photocatalytic activity [J]. J Cent South Univ, 2017, 24(2): 276-283.
DOI: 10.1007/s11771-017-3428-6
Google Scholar
[18]
He YP, Miao YM, Li CR, et al. Size and structure effect on optical transitions of iron oxide nanocrystals [J]. Phys Rev B, 2005, 71: 125411.
Google Scholar
[19]
Hu X, Yu JC, Gong JM, et al. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties [J]. Adv Mater, 2007, 19: 2324.
DOI: 10.1002/adma.200602176
Google Scholar
[20]
Larcher D, Masquelier C, Bonnin D, et al. Effect of particle size on lithium intercalation into α-Fe2O3 [J]. J Electrochem Soc, 2003, 150: A133.
DOI: 10.1149/1.1528941
Google Scholar
[21]
Wan LJ, Yan SC, Wang XY, et al. Solvothermal synthesis of monodisperse iron oxides with various morphologies and their applications in removal of Cr(VI) [J]. CrystEngComm, 2011, 13: 2727-2733.
DOI: 10.1039/c0ce00947d
Google Scholar
[22]
Lin-Vien D, Colthup NB, Fatelley WG, et al. The handbook of infrared and Raman characteristic frequencies of organic molecules [M]. Academic Press Inc., San Diego, CA, (1991).
DOI: 10.1016/b978-0-08-057116-4.50005-5
Google Scholar
[23]
Iglesias JE and Serna CJ. Miner Petrogr Acta, 1985, 29A: 363.
Google Scholar