Study on Preparation and Properties of Coaxial Electrospun PLGA/Gelatin Fibers

Article Preview

Abstract:

The coaxial electrospun fibers with large specific surface area, high porosity and core-shell structure have been great applied in biomedical field, especially as drug delivery carriers. In this paper, PLGA(polylactic acid/glycolic acid copolymer) was used as the core and the mixture of PLGA and gelatin was used as the shell. PLGA/gelatin fiber was prepared by coaxial electrospinning technology. The effects of different parameters on the surface morphology and the diameter of fibers were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1032)

Pages:

35-41

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.B. Xiao, Y.Z. Xu, K.Y. Zhang, et al, Coaxial electrospun free-standing and mechanically stable hierarchical porous carbon nanofiber membranes for flexible supercapacitors, Carbon. 160 (2020) 80-87.

DOI: 10.1016/j.carbon.2020.01.017

Google Scholar

[2] K. Navaporn, C. Surawut, H. Kan, et al, Influence of the viscosity ratio of polyacrylonitrile/poly (methyl methacrylate) solutions on core-shell fibers prepared by coaxial electrospinning, Polym. J. 49 (2017) 497-502.

DOI: 10.1038/pj.2017.8

Google Scholar

[3] Y. Lu, J.N. Huang, G.Q. Yu, et al, Coaxial electrospun fibers: applications in drug delivery and tissue engineering, Wires Nanomed. Nanobiotechnol. 8 (2016) 654-677.

DOI: 10.1002/wnan.1391

Google Scholar

[4] H.A. Alam, A.D. Dalgic, A. Tezcaner, et al, A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering, Int. J. Polym. Mater. Po. 69 (2020) 339-350.

DOI: 10.1080/00914037.2019.1581198

Google Scholar

[5] Z. Qin, P. Zhang, Z. Wu, et al, Coaxial electrospinning for flexible uniform white-light-emitting porous fibrous membrane, Mater. Design. 147 (2018) 175-181.

DOI: 10.1016/j.matdes.2018.03.040

Google Scholar

[6] B.Y. Huang, Y.R. Wang, Q. Hu, et al, A low temperature and highly sensitive ethanol sensor based on Au modified In2O3 nanofibers by coaxial electrospinning, J. Mater. Chem. C. 6 (2018) 10935-10943.

DOI: 10.1039/c8tc03669a

Google Scholar

[7] L. Del Bianco, F. Spizzo, P. Sgarbossa, et al, Dipolar magnetic interactions in Mn-doped magnetite nanoparticles loaded into PLGA nanocapsules for nanomedicine applications, J. Phys. Chem. C. 123 (2019) 30007-30020.

DOI: 10.1021/acs.jpcc.9b09146

Google Scholar

[8] S. Kim, H. Sah, Merits of sponge-like PLGA microspheres as long-acting injectables of hydrophobic drug, J. Biomater. Sci. Polym. Ed. 30 (2019) 1725-1743.

DOI: 10.1080/09205063.2019.1659712

Google Scholar

[9] X. ZONG, K. KIM, D. FANG, et al, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer. 43 (2002) 4403-4412.

DOI: 10.1016/s0032-3861(02)00275-6

Google Scholar

[10] A. Celebioglu, T. Uyar, Electrospun porous cellulose acetate fibers from volatile solvent mixture, Mater. Lett. 65 (2011) 2291-2294.

DOI: 10.1016/j.matlet.2011.04.039

Google Scholar

[11] G.J. Jiang, S. Zhang, X.H. Qin, Effect of processing parameters on free surface electrospinning from a stepped pyramid stage, J. Ind. Text. 45 (2014) 483-494.

DOI: 10.1177/1528083714537101

Google Scholar