Large Size CH3NH3PbI3 Perovskite Microcrystalline with a Capsule-Free Cavity Box Structure Grown by Solvent Thermal Reaction

Article Preview

Abstract:

In the paper, a novel perovskite microcrystalline with a capsule-free cavity box structure was creatively prepared through solvent thermal reaction, and the composition and structure of CH3NH3PbI3 perovskite microcrystalline were further characterized by scanning electron microscope (SEM) and energy dispersive X-ray (EDX) element mapping. The SEM results show that the grain size of the prepared CH3NH3PbI3 perovskite microcrystalline is more than 100 μm. Furthermore, X-ray diffraction (XRD) analysis was used to characterize the material decomposition of perovskite microcrystals before and after 150 d of air aging. The XRD results indicate the prepared perovskite microcrystalline could be stably preserved in the air for 150 d without degradation. Our method provides technical guidance for further enriching the morphology of CH3NH3PbI3 perovskite microcrystalline.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1032)

Pages:

51-56

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, Z. Wang, A. Mishra, Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics, Joule 4 (2020) 222-234.

DOI: 10.1016/j.joule.2019.11.007

Google Scholar

[2] A. Kojima, K. Teshima, Y. Shirai, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.

DOI: 10.1021/ja809598r

Google Scholar

[3] Y. Chen, Y. Lei, Y. Li, Strain engineering and epitaxial stabilization of halide perovskites, Nature 577 (2020) 209-215.

Google Scholar

[4] S.Q. Hu, J. Wang, J. Zhang, J.W. Lim, Y. Gao, S.G. Zhang, Engineering the electronic structure of perovskite oxide surface with ionic liquid for enhanced oxygen reduction reaction, Appl. Catal. B-Environ. 282 (2021) 119593.

DOI: 10.1016/j.apcatb.2020.119593

Google Scholar

[5] Y. Zhou, H. Zhou, J. Deng, Decisive structural and functional characterization of halide perovskites with synchrotron, Matter 2 (2020) 360-377.

DOI: 10.1016/j.matt.2019.12.027

Google Scholar

[6] J.H. Im, C.R. Lee, J.W. Lee, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale 3 (2011) 4088-4093.

DOI: 10.1039/c1nr10867k

Google Scholar

[7] Y. Li, X. Wang, S. Wu, H. Ci, H. Xu, X. Li, H. Sun, Z. Zhang, A. Cao, X. Guo,Y. Li, Large-scale aligned crystalline CH3NH3PbI3 perovskite array films, J. Mater. Chem. A 3 (2015) 18847-18851.

DOI: 10.1039/c5ta04936a

Google Scholar

[8] J. Chen, Z. Wan, J. Liu, S.-Q. Fu, F. Zhang, S. Yang, S. Tao, M. Wang, C. Chen, Growth of compact CH3NH3PbI3 thin films governed by the crystallization in PbI2 matrix for efficient planar perovskite solar cells, ACS Appl. Mater. Interfaces 10 (2018) 8649-8658.

DOI: 10.1021/acsami.7b18667

Google Scholar

[9] N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (2014) 7610-7630.

DOI: 10.1021/cr400544s

Google Scholar

[10] X. Li, D. Bi, C. Yi, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science 353 (2016) 58-62.

DOI: 10.1126/science.aaf8060

Google Scholar

[11] W.Q. Wu, Q. Wang, Y. Fang, Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells, Nat. Commun. 9 (2018) 1625.

DOI: 10.1038/s41467-018-04028-8

Google Scholar

[12] S. Jeong, S. Seo, H. Shin, p-Type CuCrO2 particulate films as the hole transporting layer for CH3NH3PbI3 perovskite solar cells, RSC Adv. 8 (2018) 27956.

DOI: 10.1039/c8ra02556h

Google Scholar

[13] I.S. Yang, J.S. You, S.D. Sung, C.W. Chung, J. Kim, W.I. Lee, Novel spherical TiO2 aggregates with diameter of 100 nm for efficient mesoscopic perovskite solar cells, Nano Energy 20 (2016) 272-282.

DOI: 10.1016/j.nanoen.2015.12.031

Google Scholar

[14] S. Ye, H. Rao, Z. Zhao, A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I, J. Am. Chem. Soc. 139 (2017) 7504-7512.

DOI: 10.1021/jacs.7b01439

Google Scholar

[15] J.C. Yu, S. Badgujar, E.D. Jung, Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive, Adv. Mater. 31 (2018) 1805554.

DOI: 10.1002/adma.201805554

Google Scholar

[16] Y. Bai, H. Chen, S. Xiao, Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance, Adv. Funct. Mater. 26 (2016) 2950-2958.

DOI: 10.1002/adfm.201505215

Google Scholar

[17] K.M.M. Salim, T.M. Koh, D. Bahulayan, Extended absorption window and improved stability of cesium-based triple-cation perovskite solar cells passivated with perfluorinated organics, ACS Energy Lett. 3 (2018) 1068-1076.

DOI: 10.1021/acsenergylett.8b00328

Google Scholar

[18] Q. Jiang, Y. Zhao, X. Zhang, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics 13 (2019) 460-466.

DOI: 10.1038/s41566-019-0398-2

Google Scholar

[19] Y. Liu, Q. Dong, Y. Fang, Fast growth of thin MAPbI3 crystal wafers on aqueous solution surface for efficient lateral-structure perovskite solar cells, Adv. Funct. Mater. 29 (2019) 1807707.

DOI: 10.1002/adfm.201807707

Google Scholar